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Abstract
Good practices in artificial intelligence (AI) model validation are key for achieving trustworthy AI. Within the cancer
imaging domain, attracting the attention of clinical and technical AI enthusiasts, this work discusses current gaps in AI
validation strategies, examining existing practices that are common or variable across technical groups (TGs) and
clinical groups (CGs). The work is based on a set of structured questions encompassing several AI validation topics,
addressed to professionals working in AI for medical imaging. A total of 49 responses were obtained and analysed to
identify trends and patterns. While TGs valued transparency and traceability the most, CGs pointed out the importance
of explainability. Among the topics where TGs may benefit from further exposure are stability and robustness checks,
and mitigation of fairness issues. On the other hand, CGs seemed more reluctant towards synthetic data for validation
and would benefit from exposure to cross-validation techniques, or segmentation metrics. Topics emerging from the
open questions were utility, capability, adoption and trustworthiness. These findings on current trends in AI validation
strategies may guide the creation of guidelines necessary for training the next generation of professionals working
with AI in healthcare and contribute to bridging any technical-clinical gap in AI validation.

Relevance statement This study recognised current gaps in understanding and applying AI validation strategies in
cancer imaging and helped promote trust and adoption for interdisciplinary teams of technical and clinical
researchers.

Key Points
● Clinical and technical researchers emphasise interpretability, external validation with diverse data, and bias awareness in
AI validation for cancer imaging.

● In cancer imaging AI research, clinical researchers prioritise explainability, while technical researchers focus
on transparency and traceability, and see potential in synthetic datasets.

● Researchers advocate for greater homogenisation of AI validation practices in cancer imaging.
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Graphical Abstract

• AI system multi-
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in healthcare.
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stakeholders' 
expectations.
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GGaps in understanding/application of AI validation by interdisciplinary teams.
Need for more standardization, homogeneity, and actions (e.g., training)
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Background
Artificial intelligence (AI) is increasingly being used in
medical imaging, particularly in cancer imaging. This
involves integrating and analysing big and complex data,
including medical images and clinicobiological informa-
tion, to support critical decision-making in various
oncology tasks, including risk assessment, screening,
diagnosis, organ segmentation, radiology-pathology cor-
relation, treatment response prediction, and multi-omics
data integration [1]. These scientific endeavours of AI
development are typically interdisciplinary and require
rigorous and extensive validation.
Limited research exists on practitioners’ attitudes and

experiences with AI tools. As outlined by Jungmann et al
[2], despite the common belief in the potential positive
impact of AI on healthcare, there is often low confidence
(25%) in its reliability. There is disagreement on medical
societies’ involvement in clinical validation, informing
patients about the use of AI, and its inclusion in medical
education.
Trustworthiness and clinical validation, with quality

reporting and explanation, are crucial for the acceptance
of AI systems. In 2018, a call for the robust clinical vali-
dation of new AI tools was published [3]. Yin et al [4]
compiled a systematic review of 51 studies of AI

applications evaluated in healthcare (screening, diagnosis,
risk analysis, and treatment), and found that 26 studies
looked at AI performance, 33 at clinician outcomes, 14 at
patient outcomes and one at the economic impact.
There have been multiple efforts in the research com-

munity toward standardised AI development and valida-
tion in healthcare/medical imaging and to promote the
standardisation of AI-based research reporting. The
CLAIM [5] has proposed a checklist for reporting AI
applications in medical imaging, and the CLEAR checklist
for radiomics research [6]. The R-AI-DIOLOGY checklist
[7] assesses the trustworthiness of technical solutions in
clinical neuroradiology, covering ten aspects such as dis-
ease definition, case selection, data acquisition, quality
checks, anonymisation, data management, integration,
tool updates, validation, labels, and ground truth datasets
for radiologist workflow.
Regarding AI trustworthiness, a framework was pro-

posed by the European Commission’s High-Level Expert
Group on AI [8], focusing on seven key requirements for
trustworthiness (AI technical robustness and safety,
human agency and oversight, privacy and data govern-
ance, transparency, diversity, non-discrimination and
fairness, societal/environmental well-being, and account-
ability), along with a related assessment list (ALTAI) [9].
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However, the framework is generic and requires further
specification for domains such as cancer imaging.
A more recent initiative related to the development and

validation of trustworthy AI in the medical field is the
FUTURE-AI framework [10], based on a broad consensus
(over 100 collaborators worldwide), which proposes 30
actionable guidelines for trustworthy AI in the medical
field [11]. These guidelines, based on six guiding princi-
ples for trustworthy AI (fairness, universality, traceability,
usability, robustness, and explainability), cover the entire
AI lifecycle, from design to deployment and monitoring,
and consider technical, clinical, legal, and socioethical
aspects of AI.
Finally, a recent work [12] presents an evaluation fra-

mework called “Translational Evaluation of Healthcare
AI” (TEHAI) to guide the implementation of AI systems
in healthcare settings. After identifying gaps in existing
evaluation and reporting frameworks, the final framework
proposes three main components: capability, utility, and
adoption. Wider adoption of these standards could facil-
itate coordination between technical and clinical research.
Despite these valuable efforts, gaps still exist. A study

following the CLAIM publication [13], reported devia-
tions from the CLAIM guidelines in a large proportion of
AI studies, for example, regarding lack of information on
data management, ground truth reference, inter- and
intra-reader variability, interpretability, and model failure
analysis, shortcomings also identified in the review of
Alabed et al [14]. A recent study [15] found a lack of
consistency and robustness among well-known guidelines
in AI for medical imaging, as well as difficulty in com-
pliance due to their length and complexity, as well as the
field’s fast-evolving nature.
This paper examines gaps in AI validation and reporting

in health/cancer imaging, identifying common practices,
strategy variability, and potential causes. It identifies
technical, clinical, and other barriers preventing multi-
perspective validation and divergence between technical
and clinical experts in expectations and information in AI
validation reports. This work is performed within the AI
for health imaging (AI4HI) network, which consists of
partners involved in five large EU-funded projects on big
data and AI in cancer imaging: CHAIMELEON [16],
EUCANIMAGE [17], INCISIVE [18], ProCancer-I [19],
and PRIMAGE [20]. This network collectively uses big
data repositories of annotated cancer images from hun-
dreds of thousands of cancer patients to develop AI
solutions for cancer diagnosis, treatment, and follow-up.
It includes a wide range of stakeholders, perspectives,
approaches, and disciplines, including technical, clinical,
legal, ethical, and more. The network’s AI and clinical
expertise provide insights into their attitudes and strate-
gies towards AI validation.

This analysis aims to understand clinical stakeholders’
expectations and investigate technical stakeholders’
practices regarding AI system multi-perspective validation
in healthcare. This can set the basis and fuel further dis-
cussion on actions towards bridging the gap in AI vali-
dation practices between technical and clinical experts,
with the mid-term goal of contributing to practical
guidelines for harmonisation of validation methodologies
and reporting guidelines/tools for AI in cancer imaging.

Methods
In the context of the AI Validation Working Group of the
AI4HI network, a set of structured questions was pro-
posed and organised into sections to address several AI
validation topics. Technical and clinical experts of the
network were asked to provide their responses. This
wealth of expertise in the AI4HI network allowed us to
collect responses from 49 individuals involved in AI
development and validation from technical and clinical
perspectives.

Questionnaire design and description
The AI-validation set of questions was designed colla-
boratively by defining the different validation themes to be
covered and the relevant questions that could help iden-
tify the attitudes and practices of technical and clinical
users. Most questions allowed for one or more potential
answers, defined and improved in several iterations during
a series of joint biweekly meetings. A glossary of terms
was included in the questionnaire to facilitate the proper
understanding of the questions by different professional
profiles and avoid potential ambiguities, e.g., between
explainability and interpretability [21], as distinct terms
[22] (Supplemental File 1). A small set of open-ended
questions was added, allowing for free-form answers to
enable capturing the knowledge, expertise, and under-
standing of the respondents. The option “out of my
expertise”, and ‘other’ were included as a possible reply to
several questions.
The consolidated structure consists of six sections. A

detailed presentation is available in Supplemental File 2,
while the sections are briefly described below
1. The ‘Profile’ section contains questions about the

respondent’s profile (age, expertise, work placement,
and location) and the method(s) of involvement in
the AI research (clinical expert, data provider and
curation, model training, and technical/clinical
model validation).

2. In the ‘Overall strategy for model building and
validation’ section, questions relate to practices during
AI model development that impact model validation
and address both technical and clinical researchers.
These aspects include model trustworthiness,

Chouvarda et al. European Radiology Experimental            (2025) 9:7 Page 3 of 15



robustness, generalizability, the potential trade-off
between model interpretability and performance, and
validation strategies at an early stage to promote its
applicability in a realistic clinical setting.

3. In the ‘Technical validation’ section (optional for
clinicians), respondents are asked to reflect on the
technical approaches used in the creation and
evaluation of AI models using internal and external
datasets [23]. The questions refer to approaches of
varying complexity.

4. The ‘Statistical analysis and evaluation metrics’ section
addresses the user’s practices related to the metrics
used for statistical analysis of binary classification,
segmentation and regression models, taking into
account the overall objective of each model.

5. The ‘Bias and fairness’ section addresses the user’s
perspective on detecting, reporting, and adjusting biases
in the AI model (e.g., due to under-represented groups
in the training data) and their relationship to the
fairness of the model.

6. Finally, in the ‘Concluding questions’ section, the user
can indicate their approach to AI validation and suggest
important topics in this context.

Data collection
The set of structured questions was implemented as an
electronic questionnaire distributed via a web link to
partners involved in AI technical or clinical validation in
the five AI4HI projects. Participation was anonymous and
voluntary and all AI4HI partners were invited to partici-
pate in these joint activities, respecting privacy and con-
fidentiality standards. No internet protocol-IP address was
recorded together with the answers.
In this phase, the aim was not to reach out to the AI

community at large but rather to have a limited set of
answers from respondents that were filtered based on
their involvement in the domain, avoiding the noise of
unattended responses.

Data analysis
Most of the questions had a closed form and were
therefore approached with a quantitative analysis. For
each question, the frequency of individual responses and
grouped responses was analysed and compared between
user groups. Respondents were categorised into user
groups based on their role(s) in the research project(s),
using their combined responses, in case of multiple roles
within the project. Each combination of roles results in a
single possible user group, which can be either clinical or
technical (see Table C1). An exploratory analysis was
performed using R v4.2.2 software and Python 3.9.0. We
performed descriptive statistics for all respondents and
separately per user group by first identifying the most

common characteristics of the user profile. We then
created simple or stacked bar charts for single or
multiple-choice questions and determined the percentage
of responses within each category. A Pearson χ2 test was
also performed between TG and CG, to highlight statis-
tically significant differences in responses.
The responses to the open question (Other than the AI-

validation-related topics above, are there other AI vali-
dation perspectives, especially from a clinical point of
view, that you think are important for an AI validation
plan to cover?) were imported into data management
software called NVivo 12. The six phases of thematic
analysis based on Braun and Clarke [24] were used to
analyse the qualitative data, keeping in mind the TEHAI
components to structure our qualitative analysis.

Results
In total, responses to the AI-validation questions were col-
lected from 49 AI4HI participants over 2 months, which
corresponded to a 70% response rate, approximately. The
majority (59.2%) were in the range of 20–40 years of age,
followed by the range of 40–60 (34.7%). Their work
experience was more frequently 1–5 years (40.8%), while
groups of 5–10 years and 10–20 years were also well
represented (28.6% and 26.5%, respectively). Most of the
respondents work in public research institutes (69.4%), but
health organisations (22.4%) and companies (8.2%) were also
represented. Most responses came from the combination
‘young researchers in public institutes’, but other combina-
tions were also represented (see Table C2 in Supplemental
File 3). The age above 60 was less represented, and the
combination “above 60 and private company” was absent.
A total of 30 respondents constituted the technical

group (TG), while 19 respondents were allocated to the
clinical group (CG). Figure C1 in Supplemental File 3
describes the frequency of roles within the AI project,
where multiple responses were possible. Each unique
combination of roles categorises the respondent into the
TG or CG.
The following subsections present the main differences and

agreements in responses between the two groups, in-depth
findings about each group, and other themes that emerged.

Comparison between the TG and the CG
Overall, the 15 questions that presented statistically sig-
nificant differences (χ2 p-value < 0.05) between TG and
CG are summarised in Table 1. They revolve around the
topics: balance interpretability and performance, ground
truth, factors for trustworthy models, the strategy for
explainability, improving generalizability, pre-checks on
new data, model error analysis, reasons behind wrongly
classified data, use of small datasets, how to evaluate
models, validation with external datasets, metrics for
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segmentation models, metrics for regression models,
potential biases, strategies to validate models. These dif-
ferences are discussed in detail below.
In relation to the ‘Overall strategy for model building

and validation’ (Fig. 1) in both TG and CG, the majority of
the participants (66.7% in TG and 78.9% in CG) looked
for a balance between interpretability and performance in
model building, which can be considered as expected in
the medical domain. It was also observed that both groups
agreed on validating their models only when ground truth
was available (77.3% in TG and 63.2% in CG). A minority
of participants also considered the use of unsupervised
methods to provide validation scores in new unlabelled
data (26.7% in TG and 10.5% in CG). In relation to the
strategy to improve generalizability, there was agreement
on prioritising the use of multi-institutional hetero-
geneous data (76.7% in TG and 63.2% in CG), which
confirms the choices made in AI4HI research projects and
other relevant initiatives [25].
Regarding the factors to consider models trustworthy

(Fig. 2), it is observed that in TG, 76.7% of the technical
participants gave more relevance to the transparency and
traceability of data and models, i.e., a technical aspect, this
factor being the third most important for CG (57.9%). In
contrast, explainable models [26] were of higher interest
for CG, with 84.2% of the votes being the second most
voted choice in TG (66.7%).
Regarding ‘Technical validation’ (Fig. C2 in Supple-

mental File 3), a variety of opinions were recorded. When

dealing with small datasets (< 200 patients), while both
groups considered 80% of the data and the remaining 20%
for testing, the preferred validation strategy by TG
(53.33%) was to use k-fold cross-validation, while in CG,
the most voted option (42.1%) was a single split. With
respect to the use of new datasets for external validation,
both groups reported usually using such new data when
possible (86.7% in TG and 52.6% in CG). However, in the
CG, 36.8% of the participants never performed external
validation. Finally, 80.0% of TG and 68.4% of CG parti-
cipants used only real data during validation, with only
20.0% in TG and 21.0% in CG using both real and
simulated/synthetic data after assessing the validity of the
synthetic data.
Concerning the specific methods used for model vali-

dation, all TG agreed on the use of performance metrics,
and most of CG (52.6%) voted the same. Both groups
considered the use of visual analytics tools as the second
most-used option (46.7% in the TG and 31.6% in the CG),
with manual checks in the last position (36.7% in the TG
and 21.0% in the CG).
In relation to the ‘Statistical analysis and evaluation

metrics’ (Fig. 3), when evaluating a classification model,
both groups preferred the average performance metric
suitable for the specific use case with the corresponding
95% confidence interval (40.0% for TG and 42.1% for CG),
which reflects the level of compliance with previously
suggested reporting guidelines [5]. For segmentation
models, using the DICE coefficient and other metrics that
measure the overlap between the predicted mask and the
ground truth was the most voted option in both groups
(80.0% in TG and 47.4% in CG). In regression models, the
mean square error (MSE) was the most voted option in
both TG (66.7%) and CG (42.1%). The study also found
that 42.1% of CG and 50.0% of TG would compare the
usefulness of a radiomics model against nomograms built
only on clinical variables, while 52.6% of CG and 30.0% of
TG claimed a lack of expertise in such comparisons.
Regarding the ‘Bias and fairness’ (Fig. C3 in Supple-

mental File 3) of the models, both groups in general
demonstrated awareness of selection bias in the collected
datasets, with a small minority in TG stating a lack of
knowledge. A total of 53.3% of the TG and 52.6% of CG
participants used methods to mitigate this bias. Con-
cerning the presence of biases in the dataset, 93.3% and
68.4% of the TG and CG participants, respectively, eval-
uated and reported it. When evaluating a trained model,
both groups evaluated the fairness of the models for
demographic, geographic, ethnicity, age, sex, and socio-
economic biases (66.7% in TG and 73.7% in CG). When
listing the potential biases that need to be reported
(Fig. 4), we found a balanced distribution among all the
options, with age being the most voted option in TG

Table 1 The questions that present statistically significant
differences between CG and TG

Question number Topic p-value

7 Balance interpretability and

performance

0.001

9 Ground truth 0.007

10 Factors for trustworthy models* 0.007

11 Strategy for explainability* 0.008

12 Improving generalizability 0.002

13 Pre-checks on new data/limitations 0.002

14 Model error analysis < 0.001

15 Reasons behind wrongly classified data 0.001

19 Small dataset-nested cross-validation < 0.001

20 Evaluate models* < 0.001

22 Validation with external datasets 0.005

25 Metrics to validate segmentation

models*
< 0.001

26 Metrics for regression models* < 0.001

33 Potential biases* 0.0395

34 Strategies to validate your models* < 0.001

* Denotes a question with multiple possible answers
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(83.3%), followed by sex (80.0%) and health status-related
information (66.7%). In the CG, the most voted biases
were demographic and health status-related information
(73.7% each), followed by age (68.0%) and sex (63.2%).

Finally, with regards to the general strategy followed
when validating an AI model (Fig. 5), the TG preferred the
external validation on a large test sample (46.7%), followed
by reporting predictive accuracy on an undersized

Fig. 1 ‘Overall strategy for model building and validation’ topics comparing the points of view of the TG and the CG. (Top) Balance between
Interpretability and Performance. (Middle) Always use ground truth. (Bottom) Strategy to improve generalisation

Fig. 2 The factors to consider a model as trustworthiness, comparing the points of view of the TG and the CG
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independent test sample (36.7%), while in CG, these
options were selected in 31.6% and 26.3% of the cases,
respectively, and equally with 31.6%, was the external
validation by an independent research team. Therefore,
both groups agree on the most common validation
strategies.

In-depth findings for the TG
This section focuses on an additional in-depth analysis of
responses received from TG (30 respondents, most of

them young researchers, 20–40-years-old and 1–5 years
of professional expertise, employed in European public
research institutions) (see Fig. D1 in Supplemental File 4).
In relation to the ‘Overall strategy for model building

and validation’, the vast majority of TG considered bio-
logical validation to be highly important (see Fig. 6a), with
the larger share scoring its importance as 4 (36.7%). It is
worth noting that respondents with higher levels of
expertise (i.e., between 10 years and 20 years) only gave an
average or good score in relation to the importance of

Fig. 3 Stacked bar plots (a) and multiple-choice counts (b) on some ‘Statistical analysis and evaluation metrics’ topics comparing the points of view of
the TG and the CG
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Fig. 4 The potential biases to report, comparing the points of view of the TG and the CG

Fig. 5 The main strategies followed by the participants when validating an AI model, comparing the TG and the CG
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biological validation (i.e., 3 and 4), while the top score
originated mainly from respondents with less than 10
years of expertise (see Fig. 6b), which might be related to
increasing awareness of this issue among the younger AI
developers.
Regarding explainability, the use of post hoc methods

based on important features was the most common
approach (73.3%), while the provision of local explanations
was slightly less common (60.0%). Interestingly, the use of
both approaches was quite commonly considered (46.7%)
and only a small proportion of respondents (16.7%) indi-
cated a lack of expertise. Pre-checks of new data were given
due consideration by TG respondents, although only 50%
stated that they always perform them (see Fig. 6c).
Favourably, most respondents (63.3%) confirmed always
performing some form of error analysis, with a proportion
of them (26.7%) also taking corrective action (see Fig. 6d).
However, a significant proportion of respondents (33.3%)

indicated that they only perform error analysis when time
permits or when the performance of the model is unsa-
tisfactory (an option added by one respondent). Similarly,
all TG respondents seemed to usually analyse the reasons
for their AI model’s misbehaviour, although most of them
(53.3%) stated that they would only perform such analyses
if time allowed. This may require further attention, as
identifying conditions that affect model performance is
important to ensure model trustworthiness. Robustness to
adversarial examples appeared to receive little attention
from TG respondents (always checked by 16.7%), while a
significant proportion stated that they only looked at this
issue when time allowed or never (see Fig. 6e). This relates
to the preliminary phase of the research work, not yet
translated into clinical practice, where model stability and
security are more relevant.
In terms of ‘Technical validation’, the stability of AI

models appeared to be adequately addressed by only a

Fig. 6 ‘Technical validation’ topics for the TG respondents. All the plots are in 0-to-1 proportions. a Ranking of biological validation; b Ranking of
bioloigcal validation with respect to years of expertise; c Pre-checks on new data; d Model error analysis; e Robustness against adversarial examples
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moderate proportion of TG responders (58%), mainly
using sensitivity analysis techniques (35%), as shown in
Fig. D2 in Supplemental File 4, illustrating the lack of
awareness of the importance of this type of analysis.
Nested cross-validation was considered by most TG
respondents (73.3%) to be the most appropriate approach
for training a model on a small dataset (see Fig. D3 in
Supplemental File 4). The results show that the training
and validation of AI models in a distributed environment
is still not a common practice, as 50% of the TG
respondents stated that they had no experience in this
area. For the other half who were familiar with the topic,
internal plus external validation was the only approach
chosen.
In relation to the ‘Statistical analysis and evaluation

metrics’, regression tasks appeared to be less popular
among TG responders, as a modest share of responders
(26.7%) declared that they did not use any relevant
metrics. Those familiar with the problem mostly used the
average error metrics and the 95% confidence interval,
while only a small share considered bias and variance
(16.7), as shown in Fig. D4 in Supplemental File 4.
With regard to ‘Bias and fairness’ issues, while TG

respondents considered selection bias (as mentioned in
the comparison section), they suggested that there may be
constraints when taking necessary actions. Model check-
ing against datasets having a real-world distribution of
classes appeared to be mostly performed only ‘when it is
possible’ (70%). Only a modest share of respondents
(26.7%) declared that they always performed such a check.

Similarly, fairness evaluation ‘when it is possible’ is
reported by 57% of respondents, and the analysis of
potential biases ‘when this information is available’ is
reported by 77%.

In-depth findings for the CG
In this subsection, we present the questionnaire results for
the CG (19 respondents, with the following profile
middle-aged clinicians aged between 40 and 60 years old
(47.4%), working in public hospitals (52.6%), being rela-
tively new to the AI field, i.e., having between 1 and 5
years of experience with it (42.1%).
Regarding the ‘Overall strategy for model building and

validation’, it can be observed (Fig. E1 in Supplemental
File 5) that most clinicians lack specific knowledge on
performing pre-checks on new data (42.1% responded “I
don’t know”, followed by 36.8% who responded “Maybe, it
depends on the use case and data availability”), model
error analysis (80% mentioned “I do not know how to do
it”), and robustness checks against adversarial examples
(47.4% responded “I do not know how to do it”).
Interestingly, most clinicians consider explainability to

be the most important trustworthiness factor, followed by
large datasets for training and validation and transparency
and traceability of data and models. Additionally, most
CG participants consider a post-hoc graphical feature
presentation as the preferable explainability strategy, fol-
lowed by the provision of local explanations (Fig. 7).
Regarding ‘Technical validation’, unsurprisingly, it can

be observed (Fig. E2 in Supplemental File 5) that most

Fig. 7 Trustworthiness factors and explainability strategies, from left to right
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clinicians lack specific technical knowledge or experience
in using nested cross-validation (63.2%) and distributed
learning (63.2%). Most clinicians are also constrained in
approaches performing validation with external datasets
only when possible (52.6%), perhaps due to the lack of
data availability, and in using only real data in validations
(68.4%) (Fig. E3 in Supplemental File 5). CG seemed
reluctant to use synthetic data in validations, with 21.1%
using real and synthetic data after assessing the synthetic
data validity, 5.3% using both indiscriminately, and 5.3%
using only synthetic data. Additionally, most CG
respondents do not rely on permutation-based techniques
or find it out of their expertise, with a smaller percentage
of CG using them—mostly target shuffling but also sen-
sitivity analysis (Fig. E4 in Supplemental File 5).
Regarding ‘Statistical analysis and evaluation metrics’, it

can be observed (Fig. E5 in Supplemental File 5) that most
clinicians lack specific knowledge on comparing radio-
mics signatures to nomogram models (the majority of
respondents, 52.6%), followed by 31.6% with “Sometimes,
when clinical variables are available”). Only a smaller
number (10.5%) of respondents answered that they always
asked for clinical parameters.
Regarding ‘Bias and fairness’, the study found that

despite understanding their importance in AI research,
most clinicians conduct relevant validation tasks related
to the real-world distribution of classes and fairness of the
model for potential biases only when possible (63.2% and
42.1%, respectively). Despite this, the percentage of
respondents who evaluate real class distribution and
model fairness (21.1% and 31.6%, respectively) is higher
than those who never do it (15.8% of “No, never” for both)
(Fig. E6 in Supplemental File 5).

Themes and qualitative analysis
Four themes were identified from the analysis of the open
answers in the concluding section (Table E1 Supple-
mental File 5). The three themes (capability, utility, and
adoption) follow the evaluation framework of TEHAI
[12], and the fourth theme, trustworthiness, relates to one
of the seven key requirements that AI systems should
meet the criteria set in the ALTAI list [9]. Recurrent
terms that emerged from the open answers were depicted
in a ‘word cloud’ plot (Fig. E7 in Supplemental File 5).
Each theme was elaborated with a verbatim response
(Table E2 Supplemental File 5).

Theme 1: utility
This theme stresses the need for the AI system’s useful-
ness from a variety of perspectives, such as contextual
relevance, safety, and ethical issues related to potential
clinical applications. Moreover, it evaluates the system’s
effectiveness as determined by the quality, adoption, and

alignment metrics. The participants prioritised usability,
clinical utility, clinical net benefit, clinical endpoints,
biological plausibility, causality, machine learning models
for prediction, pretreatment prediction and measures to
reduce attention theft.

Theme 2: capability
This theme concentrates on the AI system’s inherent
technological capacity to carry out its anticipated function
by examining significant elements of the AI system’s
development. This was a prominent theme evidenced by
the participants’ emphasis on internal validation and
clinical evaluation to estimate performance over time and
identify potential concept drifts leading to a degradation
in performance.

Theme 3: adoption
The adoption and integration of AI systems in healthcare
delivery have been reported as problematic, even for those
that have demonstrated efficacy. The system’s usability for
end users and beneficiaries, as well as its ability to inter-
operate with external legacy IT systems inside and outside
of the user-care facility, should be possible without any
problems. This was highlighted as a priority factor to be
evaluated when an AI system is being considered with an
emphasis on ease of integration into clinical settings and
cost effectiveness.

Theme 4: trustworthiness
This theme comprises two subthemes that are included in
the well-established trustworthiness framework, which
proposes a set of seven main requirements and a related
assessment list that AI systems should satisfy to be
regarded as trustworthy [9]:

● Explainability: participants believed that they should
be provided with good insight into the reasons why
an AI model gives a particular output or decision. To
achieve explainability, AI models need design
choices including the use of transparent models,
feature importance analysis, and other techniques
that can help to identify the factors that influence the
output of the AI model [26];

● Traceability: to preserve a thorough record of the
provenance of the data, procedures, and artefacts
involved in the creation of an AI model, traceability
is seen as a crucial prerequisite among the
participants for trustworthy AI.

Discussion
AI medical solutions aim to alleviate the burden of the
exponentially growing numbers of medical scans and their
impact on shortages of highly skilled healthcare
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professionals, enabling timely, precise diagnosis, classifi-
cation, and treatment response prediction.
Large EU-funded research projects developing different

AI-powered tools for cancer imaging involve healthcare
professionals and AI research and development teams.
Their collaboration and shared understanding of valida-
tion strategies are crucial for the development of safe AI
solutions for clinical practice. Validation of these tools is
critical as it impacts the safety, trust and credibility of AI
solutions for healthcare and medical imaging. The first EU
regulatory framework for AI (the AI Act) was proposed by
the European Commission in April 2021 and adopted by
the European Parliament in March 2024 for setting obli-
gations for providers and users based on different risk
levels of AI systems [27]. Most imaging and diagnostic
tools will be classified as high-risk having to comply with
traceability, transparency and users’ surveillance [28]. The
AI Act will further challenge the implementation of AI
imaging applications while improving their trustworthi-
ness patient safety and non-discriminatory characteristics.
Ensuring that both clinical and technical experts under-
stand and apply good AI validation practices, is a way to
promote compliance with the AI Act and consequently to
facilitate deployment of their AI applications.
This work addresses the question, ‘How is AI validated

and reported currently in the health/cancer imaging
domain by technical experts and clinical experts’, via the
analysis of the responses to several focused questions. The
comparison of responses of the two groups, technical and
clinical, revealed some points for further consideration
toward more standardised and effective AI validation.
The data analysed originate mostly from researchers in

public institutes. Although most of the TG were generally
younger than the CG, both groups were relatively new to
the field of AI, ranging from 1 year to 5 years of experi-
ence. The aforementioned fact and the fact that validation
strategies often come at later stages for several projects
contribute to several ‘not my area of expertise’ answers. In
the same vein, work in projects of limited duration toward
prototyping AI solutions, rather than deploying AI in
clinical practice, influences some of the answers “if time
allows” in various validation-related questions.
The two groups have different understandings and

priorities regarding validation factors related to trust-
worthy AI models. The TG prioritises transparency and
traceability of data and models, more than CG, potentially
due to CG’s less exposure to AI development processes
and the importance of the different dataset and model
quality parameters on AI trustworthiness. On the other
hand, CG focuses more on the explainability of AI models.
As suggested by Liu et al [29], when considering physi-
cians, explainable AI may seriously influence AI tech-
nology trust and perceived value, with a significant impact

on the intention to use AI. It would be advisable that both
groups share a common understanding and appreciation
of trustworthy AI. In fact, Jacobson and Krupinski [30]
recommended the involvement of domain experts such as
radiologists in the development process to facilitate early
interaction and ensure that requirements are aligned with
clinical practice. The work of Cai et al [31] provides
insights into the onboarding needs of medical practi-
tioners regarding human-AI collaborative decision-
making. They reveal that medical practitioners require
upfront information about the global properties of the
models, including their strengths, limitations, point-of-
view, and overall design objective, beyond just under-
standing the case-specific reasoning behind model
decisions.
Overall, some deviations in the responses provided by

the two groups, for example, with respect to ‘cross-vali-
dation’, could be explained by their technical nature, as
well as the lack of common understanding between the
two groups regarding the AI development stages. Even
when the most voted option was the same, e.g., regarding
segmentation evaluation metrics, the percentage was dif-
ferent in the two groups (e.g., 80% versus 47.3%), and CG
considered several questions ‘not my area of expertise’,
being more on the technical side. The lack of widely
accepted standardised methods in AI technical validation
and reporting approaches hinders widespread adoption
and integration into routine care. A study by Chen et al
[32] on the adoption of clinical AI by physicians and
medical students revealed that despite awareness of AI’s
increasing use, only 10–15% of physicians and medical
students have practical experience and knowledge about
AI. Common understanding would be required as regards
the metrics to validate segmentation models for use in
clinical routine, or the usefulness of an AI model against a
clinical variables’ nomogram. Since clinicians are used to
employing nomograms for disease prognosis, it could be a
natural extension to compare clinical variable-based
nomograms with radiomics signatures for the validation
of AI models.
It is also worth noting that the CG group is more

reserved for using synthetic data. While the potential of
synthetic data in clinical research has been reported
[33, 34], it has also been recognised that more research
toward wider adoption is needed, including among others,
the cost-effectiveness of generating synthetic data and
assessment of disclosure risk.
With the TG in focus, the responses gave rise to some

concerns regarding the consistency of approaches when
checking the stability and robustness of AI models for
adoption in clinical practice. This finding aligns with the
research gaps identified by Davis et al [35], emphasising
the need for working on the AI modelling lifecycle, in
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maintenance, performance monitoring, and updating.
This quantitative finding is also in line with the ‘Cap-
ability’ theme highlighted from the qualitative analysis of
the open questions, as regards the identified need to
estimate model performance over time and identify
potential concept drifts.
The fact that most TG respondents declared analysing

the reasons behind the misbehaviour of their AI model
‘only if time allows’ may need further consideration. This
may relate to the fact that, in the context of the AI4HI
projects, the respondents are involved in the development
of research prototypes that are not expected to be clini-
cally deployed immediately after their delivery. Evidently,
promoting error analyses as a standard part of AI vali-
dation could enhance traceability and trustworthiness,
and thus deployment of AI.
In addition, the TG acknowledged fairness issues (50%)

but less competence in addressing them, suggesting a lack
of thorough examination of real-world data bias in prac-
tice. This highlights the need for further investigation and
consideration when real-world deployment of research AI
prototypes is intended. Bias issues are expected to be
better dealt with when more extended datasets are avail-
able, either in centralised or federated repositories, which
is a direction toward which the research community is
moving.
The study reveals a diverse strategy for model validation

in the TG, with respondents choosing various options such
as external and internal validation, large and small test
samples, and independent research teams. While this
diversity of opinion is partly explained by the diversity of
conditions, options, and validation tasks in the various
AI4HI projects, it also suggests the lack of a standardised,
universally accepted procedure. Access to reliable data sets
for independent validation by the original group is chal-
lenging in the medical field, whereas “external validation
using new test data done by an independent research team”
is more common in classical clinical research. As high-
lighted in a recent review [4], randomised controlled trials
on AI in clinical practice are scarce, while the small sample
size and single-centre design hinder the model's general-
izability. Recently proposed validation platforms [36] aim
to use real-world data from clinical data warehouses for
external AI validation and method comparison/
benchmarking.
The qualitative analysis aimed to give respondents more

freedom in expressing their own needs in relation to the
clinical validation of AI models. This analysis revealed
four priorities: utility, capability, adoption, and trust-
worthiness, the importance of which and their role in
supporting the integration of AI into clinical workflows
have been well described in the literature. These four
themes are linked to the quantitative analysis of the closed

questions. For example, regarding ‘trustworthiness’, the
quantitative analysis also identified explainability and
traceability as the most frequently selected options for the
trustworthiness of the model for the CG and TG,
respectively. They are also documented as criteria in the
TEHAI [12, 13, 15] evaluation framework.
Overall, this work, highlighting similarities and differ-

ences in the perception of AI validation tasks by technical
and clinical experts involved in AI for health/cancer
imaging, emphasises the need for more standardised and
widely accepted AI validation methods to bridge the gap
between technical and clinical perspectives and for a
comprehensive understanding and planning of AI vali-
dation and AI trust.
A limitation of this work is the low number of parti-

cipants and the research nature of the AI development
work in which most of the respondents are involved,
which also introduces a slight imbalance between TG/CG
responses. Responses may have been different if they
were coming from technical and clinical experts working
on or with deployable AI at more advanced stages of AI
development and not research prototypes. The term
validation is not used consistently in the literature, and
among different groups, as suggested by [37]. Responses
may also differ based on a possible different under-
standing of the AI validation definition from technical
and clinical respondents—while the former see model
validation as a technical step of hyperparameter tuning to
improve model performance, the latter see it as a process
for implementation in the clinical setting using one or
more realistic and external test sets. A survey with wider
coverage with participants representing in a more
balanced way various workplace contexts, more advanced
AI development stages, age, years of experience, and
background profiles could shed more light on these
questions and extend the identification and under-
standing of possible further recurring paradigms and
attitudes among groups. Of note, in this work, the teams
are characterised in a binary manner as technical or
clinical, based on their main role in research projects,
while this does not exclude the existence of both areas of
expertise within the team, a feature that may become
more evident in the future, as research and clinical
practice require more interdisciplinarity and would sug-
gest the addition of a third class of responders (the mixed
group).
In conclusion, this work contributes toward the defini-

tion of best practices in cancer imaging AI validation, to
cover both technical and clinical perspectives while also
considering AI trustworthiness. The findings highlight the
need for attention and elaboration on issues that are now
weakly or controversially addressed. Within the AI4HI
cluster, there is a continuous effort toward exploring
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common practices and sharing knowledge and experi-
ence, including the harmonisation of validation meth-
odologies and reporting guidelines/tools for trustworthy
AI in cancer imaging. The work revolves around AI in
cancer imaging and capitalises on the accumulated
researchers’ experience in this area about: (a) the opi-
nions/expectations of radiologists and AI developers; (b)
the clinical challenges to be solved by AI methods, e.g.,
segmentation of lesions, diagnosis, and prognosis of
metastasis; (c) the particularities of data sources; and (d)
frequent experiences in validation. The findings are
extensible to the wider health imaging domain and other
health data-driven areas, bearing in mind that the abun-
dance of data for validation may vary among domains, as
well as the complexity of problems and expectations for
performance.

Abbreviations
AI Artificial intelligence
AI4HI AI for health imaging
ALTAI Assessment list for trustworthy AI
CG Clinical group
TEHAI Translational evaluation of healthcare AI
TG Technical group

Supplementary information
The online version contains supplementary material available at https://doi.
org/10.1186/s41747-024-00543-0.

Additional file 1: Table C 1. The correspondence of ‘Roles’ Combinations
to Clinical and Technical group. Table C 2. Age-working place
combinations of the whole group. Figure C 1. Responses regarding user
roles (model training, model validation (technical), model validation
(clinical), clinical expert, data provider and data curation). Multiple
responses were possible. Figure C 2. Stacked bar plots on some ‘Technical
validation’ topics comparing technical and clinical profiles points of view.
Figure C 3. Stacked bar plots on some ‘Bias and fairness’ topics comparing
technical and clinical profiles points of view. Figure D 2. Bar plot about
the use of permutation-based techniques to assess model stability by TG
respondents. The x axis indicates the proportion of responses. Figure D 3.
Bar plot about the use of nested cross-validation by TG respondents. The x
axis indicates the proportion of responses. Figure D 4. Bar plot about the
strategy of reporting regression models adopted by TG re-spondents. The
x axis indicates the proportion of responses. Figure D 5. Dataset Splits.
Figure D 6. Use of Permutation Techniques. Figure D 7. Segmentation
evaluation metrics. Figure D 8. Regression evaluation metrics. Figure D 9
Reporting on regression models. Figure E 1. Stacked bar plots on the
‘Overall strategy for model building and validation’ top-ics where clinicians
would benefit from further exposure. Figure E 2. Stacked bar plots on the
‘Technical Validation’ topics where clinicians would ben-efit from further
exposure. Figure E 3. Stacked bar plots on the ‘Technical Validation’ topics
where clinicians are some-how limited. Figure E 4. Bar plots on the
multiple-choice question regarding permutation-based tech-niques.
Figure E 5. Stacked bar plots on the ‘Statistical analysis and evaluation
metrics’ topics where clinicians would benefit from further exposure.
Figure E 6. Stacked bar plots on the ‘Bias and Fairness’ topics where
clinicians are some-how limited. Figure E 7. Word cloud from common
terms emerged from open questions on AI validation strategies. Table E 1
List of themes that emerged from the data analysis and concepts per
theme. Table E 2 List of themes that emerged from the data analysis and
concepts per theme. In the verbatim quotes, ‘P’ stands for participant

Acknowledgements
The authors thank all the anonymous respondents of this questionnaire for
their valuable insights. No generative AI tool was used for the production of
images and no LLM was used for text generation or text improvement.

Author contributions
NP conceived the idea and designed the questionnaire with IC and with input
from all co-authors. IC organised the research, contributed to the analysis of
the results and was the main editor of the paper. GT, KL, MT, and LMB gave
feedback during the design and helped in circulating the questionnaire
among the involved project researchers. SC, AV, AJ-P, and LC-A contributed to
the analysis of the results and produced the visualisations. LZ and SN-G
contributed to the qualitative analysis of the results. YM contributed to the
state of the art. MB, LZ, and SN-G provided medical insights and feedback. All
co-authors contributed to the editing and revision of the paper. All authors
read and approved the final manuscript.

Funding
This work has been partially funded by the EU H2020 projects: INCISIVE
#952179, ProCAncer-I #952159, EUCANIMAGE #952103, PRIMAGE #826494,
CHAIMELEON #952172, and the Horizon Europe projects RadioVal #101057699
and EUCAIM #101100633.

Data availability
All data analysed during this study are included in this published article and its
supplementary information files.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
AJ-P is affiliated with Quibim SL. The remaining authors declare that they have
no competing interests.

Author details
1School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
2Institute of Information Science and Technologies of the National Research
Council of Italy, Pisa, Italy. 3Computational Clinical Imaging Group (CCIG),
Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.
4Quibim SL, Valencia, Spain. 5Biomedical Imaging Research Group (GIBI230), La
Fe Health Research Institute, Valencia, Spain. 6Data Analysis and Visualization,
University of Konstanz, Konstanz, Germany. 7Department of Pharmacy,
Kingston University London, London, UK. 8Faculty of Health, Science, Social
Care & Education, Kingston University London, London, UK. 92nd Department
of Radiology, Medical University of Gdansk, Gdansk, Poland. 10Research and
Development Lab, Gruppo Maggioli Greek Branch, Maroussi, Greece.
11Departament de Matemàtiques i Informàtica, Artificial Intelligence in
Medicine Lab (BCN-AIM), Universitat de Barcelona, Barcelona, Spain. 12Institució
Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
13Computational BioMedicine Laboratory (CBML), Foundation for Research and
Technology-Hellas (FORTH), Heraklion, Greece. 14Radiology Department, La Fe
Polytechnic and University Hospital and Health Research Institute, Valencia,
Spain.

Received: 4 September 2024 Accepted: 29 November 2024

References
1. Koh D-M, Papanikolaou N, Bick U et al (2022) Artificial intelligence and

machine learning in cancer imaging. Commun Med 2:133. https://doi.
org/10.1038/s43856-022-00199-0

Chouvarda et al. European Radiology Experimental            (2025) 9:7 Page 14 of 15

https://doi.org/10.1186/s41747-024-00543-0
https://doi.org/10.1186/s41747-024-00543-0
https://doi.org/10.1038/s43856-022-00199-0
https://doi.org/10.1038/s43856-022-00199-0


2. Jungmann F, Jorg T, Hahn F et al (2021) Attitudes toward artificial
intelligence among radiologists, IT specialists, and industry. Acad Radiol
28:834–840. https://doi.org/10.1016/j.acra.2020.04.011

3. Park SH, Kressel HY (2018) Connecting technological innovation in arti-
ficial intelligence to real-world medical practice through rigorous clinical
validation: what peer-reviewed medical journals could do. J Korean Med
Sci. https://doi.org/10.3346/jkms.2018.33.e152

4. Yin J, Ngiam KY, Teo HH (2021) Role of artificial intelligence applications
in real-life clinical practice: systematic review. J Med Internet Res
23:e25759. https://doi.org/10.2196/25759

5. Mongan J, Moy L, Kahn CE (2020) Checklist for artificial intelligence in
medical imaging (CLAIM): a guide for authors and reviewers. Radiol Artif
Intell 2:e200029. https://doi.org/10.1148/ryai.2020200029

6. Kocak B, Baessler B, Bakas S et al (2023) CheckList for EvaluAtion of
Radiomics research (CLEAR): a step-by-step reporting guideline for
authors and reviewers endorsed by ESR and EuSoMII. Insights Imaging
14:75–88. https://doi.org/10.1186/s13244-023-01415-8

7. Haller S, Van Cauter S, Federau C, Hedderich DM, Edjlali M (2022) The R-AI-
DIOLOGY checklist: a practical checklist for evaluation of artificial intelli-
gence tools in clinical neuroradiology. Neuroradiology 64:851–864.
https://doi.org/10.1007/s00234-021-02890-w

8. Ala-Pietilä P (2019) Ethics guidelines for trustworthy AI. Publications Office
of the EU

9. Ala-Pietilä P (2020) The assessment list for trustworthy artificial intelli-
gence (ALTAI) for self-assessment. Publications Office of the EU

10. Lekadir K, Osuala R, Gallin C et al (2021) FUTURE-AI: guiding principles and
consensus recommendations for trustworthy artificial intelligence in
medical imaging. https://arxiv.org/abs/2109.09658. Accessed 26 May 2023

11. The FUTURE-AI initiative. https://future-ai.eu/. Accessed 26 May 2023
12. Reddy S, Rogers W, Makinen V-P et al (2021) Evaluation framework to

guide implementation of AI systems into healthcare settings. BMJ Health
Care Inform. https://doi.org/10.1136/bmjhci-2021-100444

13. Belue MJ, Harmon SA, Lay NS et al (2023) The low rate of adherence to
checklist for artificial intelligence in medical imaging criteria among
published prostate MRI artificial intelligence algorithms. J Am Coll Radiol
20:134–145. https://doi.org/10.1016/j.jacr.2022.05.022

14. Alabed S, Maiter A, Salehi M et al (2022) Quality of reporting in AI cardiac
MRI segmentation studies—a systematic review and recommendations
for future studies. Front Cardiovasc Med 9:956811. https://doi.org/10.
3389/fcvm.2022.956811

15. Cerdá-Alberich L, Solana J, Mallol P et al (2023) MAIC-10 brief quality
checklist for publications using artificial intelligence and medical images.
Insights Imaging 14:11. https://doi.org/10.1186/s13244-022-01355-9

16. CHAIMELEON project. https://chaimeleon.eu/. Accessed 26 May 2023
17. EUCANIMAGE project. https://eucanimage.eu/. Accessed 26 May 2023
18. INCISIVE project. https://incisive-project.eu/. Accessed 26 May 2023
19. PROCANCER-i project. https://www.procancer-i.eu/. Accessed 26 May

2023
20. https://www.primageproject.eu/ PRIMAGE project. Accessed 26 May 2023
21. Champendal M, Müller H, Prior JO, Dos Reis CS (2023) A scoping review of

interpretability and explainability concerning artificial intelligence meth-
ods in medical imaging. Eur J Radiol 169:111159. https://doi.org/10.1016/
j.ejrad.2023.111159

22. Castiglioni I, Rundo L, Codari M et al (2021) AI applications to medical
images: from machine learning to deep learning. Phys Med 83:9–24.
https://doi.org/10.1016/j.ejmp.2021.02.006

23. Collins GS, Dhiman P, Ma J et al (2024) Evaluation of clinical prediction
models (part 1): from development to external validation. BMJ
384:e074819. https://doi.org/10.1136/bmj-2023-074819

24. Braun V, Clarke V (2006) Using thematic analysis in psychology. Qual Res
Psychol 3:77–101. https://doi.org/10.1191/1478088706qp063oa

25. Kohl S (2022) European health data space proposal launched. Eur J Hosp
Pharm 29:240–240. https://doi.org/10.1136/ejhpharm-2022-003413

26. Holzinger A, Langs G, Denk H, Zatloukal K, Müller H (2019) Causability and
explainability of artificial intelligence in medicine. Wiley Interdiscip Rev
Data Min Knowl Discov 9:e1312. https://doi.org/10.1002/widm.1312

27. EU AI Act (2024) First regulation on artificial intelligence. https://www.
europarl.europa.eu/topics/en/article/20230601STO93804/eu-ai-act-first-
regulation-on-artificial-intelligence. Accessed 1 Oct 2024

28. The EU AI Act (2024) imaging and diagnostics. https://www.mhc.ie/latest/
insights/the-eu-ai-act-imaging-and-diagnostics-2. Accessed 1 Oct 2024

29. Liu C-F, Chen Z-C, Kuo S-C, Lin T-C (2022) Does AI explainability affect
physicians’ intention to use AI? Int J Med Inform 168:104884. https://doi.
org/10.1016/j.ijmedinf.2022.104884

30. Jacobson FL, Krupinski EA (2021) Clinical validation is the key to adopting
AI in clinical practice. Radiol Artif Intell 3:210104. https://doi.org/10.1148/
ryai.2021210104

31. Cai CJ, Winter S, Steiner D, Wilcox L, Terry M (2019) Hello AI”: uncovering
the onboarding needs of medical practitioners for human-AI collabora-
tive decision-making. In: Proceedings of the ACM on human-computer
interaction, vol 3. ACM, 1–24. https://doi.org/10.1145/3359206

32. Chen M, Zhang B, Cai Z et al (2022) Acceptance of clinical artificial
intelligence among physicians and medical students: a systematic review
with cross-sectional survey. Front Med 9:45–61. https://doi.org/10.3389/
fmed.2022.990604

33. Reiner Benaim A, Almog R, Gorelik Y et al (2020) Analyzing medical
research results based on synthetic data and their relation to real data
results: systematic comparison from five observational studies JMIR Med
Inform 8:16492. https://doi.org/10.2196/16492

34. Kokosi T, Harron K (2022) Synthetic data in medical research. BMJ Med
1:000167. https://doi.org/10.1136/bmjmed-2022-000167

35. Davis SE, Walsh CG, Matheny ME (2022) Open questions and research
gaps for monitoring and updating AI-enabled tools in clinical settings.
Front Digit Health 4:958284. https://doi.org/10.3389/fdgth.2022.958284

36. Tsopra R, Fernandez X, Luchinat C et al (2021) A framework for validating
AI in precision medicine: considerations from the European ITFoC con-
sortium. BMC Med Inform Decis Mak 21:274–288. https://doi.org/10.1186/
s12911-021-01634-3

37. Kim DW, Jang HY, Ko Y et al (2020) Inconsistency in the use of the term
“validation” in studies reporting the performance of deep learning
algorithms in providing diagnosis from medical imaging. PLoS One
15:e0238908. https://doi.org/10.1371/journal.pone.0238908

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Chouvarda et al. European Radiology Experimental            (2025) 9:7 Page 15 of 15

https://doi.org/10.1016/j.acra.2020.04.011
https://doi.org/10.3346/jkms.2018.33.e152
https://doi.org/10.2196/25759
https://doi.org/10.1148/ryai.2020200029
https://doi.org/10.1186/s13244-023-01415-8
https://doi.org/10.1007/s00234-021-02890-w
https://arxiv.org/abs/2109.09658
https://future-ai.eu/
https://doi.org/10.1136/bmjhci-2021-100444
https://doi.org/10.1016/j.jacr.2022.05.022
https://doi.org/10.3389/fcvm.2022.956811
https://doi.org/10.3389/fcvm.2022.956811
https://doi.org/10.1186/s13244-022-01355-9
https://chaimeleon.eu/
https://eucanimage.eu/
https://incisive-project.eu/
https://www.procancer-i.eu/
https://www.primageproject.eu/
https://doi.org/10.1016/j.ejrad.2023.111159
https://doi.org/10.1016/j.ejrad.2023.111159
https://doi.org/10.1016/j.ejmp.2021.02.006
https://doi.org/10.1136/bmj-2023-074819
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1136/ejhpharm-2022-003413
https://doi.org/10.1002/widm.1312
https://www.europarl.europa.eu/topics/en/article/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence
https://www.europarl.europa.eu/topics/en/article/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence
https://www.europarl.europa.eu/topics/en/article/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence
https://www.mhc.ie/latest/insights/the-eu-ai-act-imaging-and-diagnostics-2
https://www.mhc.ie/latest/insights/the-eu-ai-act-imaging-and-diagnostics-2
https://doi.org/10.1016/j.ijmedinf.2022.104884
https://doi.org/10.1016/j.ijmedinf.2022.104884
https://doi.org/10.1148/ryai.2021210104
https://doi.org/10.1148/ryai.2021210104
https://doi.org/10.1145/3359206
https://doi.org/10.3389/fmed.2022.990604
https://doi.org/10.3389/fmed.2022.990604
https://doi.org/10.2196/16492
https://doi.org/10.1136/bmjmed-2022-000167
https://doi.org/10.3389/fdgth.2022.958284
https://doi.org/10.1186/s12911-021-01634-3
https://doi.org/10.1186/s12911-021-01634-3
https://doi.org/10.1371/journal.pone.0238908

	Differences in technical and clinical perspectives on AI validation in cancer imaging: mind the gap!
	Background
	Methods
	Questionnaire design and description
	Data collection
	Data analysis

	Results
	Comparison between the TG and the CG
	In-depth findings for the TG
	In-depth findings for the CG
	Themes and qualitative analysis
	Theme 1: utility
	Theme 2: capability
	Theme 3: adoption
	Theme 4: trustworthiness


	Discussion
	Supplementary information
	Acknowledgements




