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Purpose: To assess the impact of scanner manufacturer and scan protocol on the performance of deep learning 
models to classify prostate cancer (PCa) aggressiveness on biparametric MRI (bpMRI). 

Materials and Methods: In this retrospective study, 5,478 cases from ProstateNet, a PCa bpMRI dataset with ex-
aminations from 13 centers, were used to develop five deep learning (DL) models to predict PCa aggressiveness 
with minimal lesion information and test how using data from different subgroups—scanner manufacturers and en-
dorectal coil (ERC) use (Siemens, Philips, GE with and without ERC and the full dataset)—impacts model perfor-
mance. Performance was assessed using the area under the receiver operating characteristic curve (AUC). The im-
pact of clinical features (age, prostate-specific antigen level, Prostate Imaging Reporting and Data System [PI-
RADS] score) on model performance was also evaluated. 

Results: DL models were trained on 4,328 bpMRI cases, and the best model achieved AUC = 0.73 when trained and 
tested using data from all manufacturers. Hold-out test set performance was higher when models trained with data 
from a manufacturer were tested on the same manufacturer (within-and between-manufacturer AUC differences of 
0.05 on average, P < .001). The addition of clinical features did not improve performance (P = .24). Learning curve 
analyses showed that performance remained stable as training data increased. Analysis of DL features showed that 
scanner manufacturer and scan protocol heavily influenced feature distributions. 

Conclusion: In automated classification of PCa aggressiveness using bpMRI data, scanner manufacturer and en-
dorectal coil use had a major impact on DL model performance and features. 

Published under a CC BY 4.0 license. 
 
Prostate cancer aggressiveness could be predicted using biparametric MRI and deep learning 
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with negligible expert input, but performance was impacted by scanner manufacturer and scan 
protocol. 

Key Points 
Deep learning models predicted prostate cancer aggressiveness using only biparametric MRI 
with no lesion annotations or lesion location information (area under the receiver operating char-
acteristic curve [AUC]=0.73). 
Scanner manufacturer and endorectal coil use affected predictive performance of models (AUC 
improved by 0.05 when models were tested on data similar to the training data, P < .001). 
Inclusion of clinical variables (age, prostate specific antigen level, and PI-RADS score) led to no 
performance improvements (P = .24). 
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Prostate cancer (PCa) staging constitutes an important part of disease management (1,2). The 
most recent International Society of Urological Pathology (ISUP) grading system is associated 
with biochemical relapse-free survival, metastasis-free survival and PCa-specific survival (3). 
This grading requires a biopsy (2), an invasive procedure associated with complications such as 
pain and infection (4); additionally, biopsy sampling errors may lead to false negative results (5). 
Noninvasive techniques, such as biparametric MRI (bpMRI), are usually performed before the 
biopsy and as a part of PCa staging (6). 

Previous works have shown that it is possible to predict PCa aggressiveness using both 
radiomics (7,8) and deep learning (DL) methods (9–11). Other work has focused on predicting 
PI-RADS score (12,13), but that task is not considered here. Radiomics methods require the 
segmentation of lesions (or prostate gland (8)), and previously suggested DL methods typically 
require a nonnegligible amount of information regarding the location of the lesion (bounding box 
or lesion segmentation masks) and/or make use of relatively small datasets to train and validate 
the models (Table C.1). 

To simplify the task of PCa aggressiveness classification using DL models, ISUP1 le-
sions should be distinguished from ISUP2–5 lesions. While some models group ISUP1 and 
ISUP2 together (14), ISUP2 lesions can still have high recurrence (22.6%) (15). As such, classi-
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fying ISUP2 as low PCa aggressiveness can lead to patients missing necessary care. Similar to 
other ISUP-based tasks, this categorization could be used to reduce the number of unnecessary 
biopsies by identifying cases that are likely to be clinically insignificant among patients referred 
for biopsy. 

The aim of this retrospective study was to show the impact of scanner manufacturer and 
endorectal coil use on PCa aggressiveness (ISUP1 versus ISUP2–5) prediction in the absence of 
lesion location information with one of the largest PCa bpMRI datasets to date, ProstateNet (16). 
Additionally, deep features were inspected to better understand how the presence of scanner 
manufacturer and scan protocol diversity can lead to changes in performance. 

Materials and Methods 
Due to the retrospective nature of this study, informed consent was waived by the independent 
review board of each participating institution (Table C.2). 

Data 
The ProstateNet dataset.— 

This study incorporated 8,891 bpMRI studies from the ProstateNet dataset in Digital Imaging 
and Communications in Medicine (DICOM) format, accessed on March 13th, 2023. The cases, 
available at https://prostatenet.eu/, were collected from 12 distinct European clinical centers as a 
part of the ProCAncer-I project (Table C.2; https://www.procancer-i.eu/). Given the diverse ac-
quisition protocols implemented across centers, a unified view was not feasible; however, while 
not formally analyzed in the current study, the composition of magnetic field strength (between 
1.5T and 3.0T) was variable when stratifying by manufacturer (Figure B.1). All examinations 
were interpreted by through histopathology and annotated using Gleason scores the available his-
topathologist at each center, allowing for the derivation of ISUP scores (1). Prostate-specific an-
tigen (PSA) level, age at baseline and Prostate Imaging Reporting and Data System (PI-RADS) 
data were also available for most studies. As inclusion criteria, only patients referenced for biop-
sy were included, leading to a subset of 5,478 bpMRI studies with available Gleason grades and 
ISUP grades (Fig 1; demographic parameters in Table C.3). To avoid issues of data leakage, a 
single study corresponding to the MRI examination that preceded a confirmatory biopsy was se-
lected for each patient. Prior to uploading to the ProstateNet server, all data were de-identified 
and anonymized using a protocol identical to that used by the RSNA (17). Ethics committee ap-
proval and patient consent were obtained by each clinical partner (Table C.2). Finally, we note 
that while using an endorectal coil (ERC) in MRI examinations is controversial and may not be 
beneficial (18), we have included studies using ERC as they allowed us to determine how this 
impacts the predictive performance of potential artificial intelligence solutions. 

Dataset preparation and composition.— 

Table 1 shows the dataset composition in terms of manufacturer and PCa aggressiveness. The 
dataset comprised 2,418 Siemens studies, 1,712 Philips studies and 1,575 GE studies (539 with 
ERC and 1,036 with no ERC), with a small proportion of MRI negative studies (7.1% studies 
with PI-RADS ≤ 2; Table C.4). All sequences were center cropped using a 128 × 128 window 
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and cropped/padded such that a total of 24 slices were present, similar to a previous work (11). 
T2-weighted (T2 W) and high b-value diffusion weighted images (DWI) sequences were indi-
vidually scaled between 0 and 1, whereas apparent diffusion coefficient (ADC) sequences were 

first converted to mm2⁄s (if in μ m2⁄s) and multiplied by  to maintain their dynamic range. 

Whenever models with T2 W, ADC, and DWI sequences were trained, all three sequences for a 
given study were concatenated. To determine whether the used crop size could negatively impact 
performance, sequences were also cropped to size 192 × 192 × 24 for a crop size sensitivity 
analysis. 

Model Specifications and Training 
Models were trained on T2 W sequences alone or T2 W together with DWI and ADC sequences 
to predict whether studies had ISUP grade 1 or ISUP grades 2–5. In clinical practice, T2 W se-
quences are used for anatomic resolution, whereas DWI and ADC are used for lesion localization 
and assessment of lesion morphology and intensity (6). Five distinct 3D DL models were trained: 
1) a simple 3D VGG-based model composed only of convolutions, batch normalization and acti-
vation layers, and maximum pooling (19); 2) a 3D residual network model; 3) a 3D ConvNeXt 
model (20); 4) a 3D vision transformer (ViT) model (21); and 5) a factorized ViT model. The 
factorized ViT architecture is similar to that proposed in (21) but separates the processing of 
within and between slice information by applying a ViT to each slice and a second ViT to the 
slice information in each sequence. Networks were implemented in PyTorch (22) and trained for 
a total of 100 epochs using AdamW (23). Details on hyperparameters, DL models, training, ini-
tialization and augmentation are available in the Supplementary Methods. 

Inclusion of Clinical Features in Deep Learning Models 
To test how age at baseline and total PSA level may contribute toward prediction, “hybrid mod-
els” combining an image (MRI sequence) and tabular network were trained and compared with 
“sequence-only models.” The image network is the same as those described above, whereas the 
tabular network is a linear model (Supplementary Methods). Additionally, cross-validated elastic 
net-regularized linear classification models (24) were trained. These models used glmnet (25) 
with probability predictions from sequence-only models, age, total PSA level and PI-RADS 
score as predictors, such that pfinal = sigmoid(pimage + β1 PSA + β2 age + β3 PI–RADS), where β1, 
β2 and β3 are linear coefficients. 

Model Training and Evaluation 
Each model was trained five times using five-fold stratified cross-validation at the patient level 
and further evaluated on an independent hold-out test set. All models were trained using ISUP 
grade and manufacturer stratification. For training and testing, we consider the full training data 
(Full) and 4 subsets derived from these data: i) GE (ERC), ii) GE (no ERC), iii) Philips, and iv) 
Siemens. Each validation fold was constructed from the subset of all studies containing all image 
sequences and all clinical data (age and PSA level; Fig 1), guaranteeing that validation and test-
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ing are performed on the same studies. Training was performed on the set of available sequences 
not belonging to the validation fold or hold-out test set. 

To understand the relationship between the amount of available training data and perfor-
mance a learning curve analysis was performed. This involved training models with 10%, 30%, 
50% and 70% of the available training data and calculating the performance for the same cross-
validation and hold-out test sets. 

Analysis of Differences between Dataset Subsets 
To assess the difference between feature representations for different manufacturers and classifi-
cations, the features from the last feature extraction layer of the best-performing fold of the best-
performing model were extracted. Then, t-distributed stochastic neighbor embeddings (t-SNE) 
(26) (implemented in the Rtsne package for R (26,27)) were calculated. Given that t-SNE is ap-
propriate for only qualitative analysis, optimal transport dataset distances were used (28) as a 
quantitative measure of feature differences. To do this, distances between subsets constructed 
from the original testing set (stratified by manufacturer and classification) were calculated using 
the formulation of the Wasserstein 2-distance noted by Alvarez-Melis and Fusi (28) (Supplemen-
tary Methods). 

Alternative Target Categorization 
To better understand if there could be an impact from the ISUP grade binarization, we trained 
four sequence-only (T2 W and T2 W+ADC+DWI) models (VGG, ConvNext, ViT, factorized 
ViT) stratified by scanner manufacturer using a different categorization—ISUP grades 1–2 ver-
sus ISUP grades 3–5; this enables us to make our work compatible with others using this alterna-
tive categorization. Additionally, and as described above for the methodology using ISUP grade 
1 versus ISUP grades 2–5, we trained elastic net-regularized linear classification models to pre-
dict the target (ISUP grades 1–2 versus ISUP grades 3–5) using classification probabilities from 
deep-learning models and clinical features. 

Statistical Analysis 
Reported cross-validation and hold-out test set performances were obtained using the model with 
the highest observed area under the receiver operating characteristic curve (AUC) during train-
ing. For external testing, we used the average of the five folds from the best performing model 
on the Prostate Imaging: Cancer AI (PI-CAI) studies with available ISUP scores (n = 653, 425 
with ISUP > 1) (29). Statistical analysis was conducted using R version 4.2.2 (27). 

To better account for the relatively large number of comparisons, four multivariate linear 
models were constructed: (i) AUCCV = Manufacturer + Architecture + Sequences (Model I), (ii) 
AUCCV = Manufacturer + Convolutional Architecture + Sequences (Model II), (iii) AUCTest = 
Train Manufacturer + Test Manufacturer + Is Same + Test Manufacturer: Is Same + Clinical + 
Architecture + Sequences (Model III) and (iv) AUCTest = Train Manufacturer + Test Manufac-
turer + Architecture + Sequences + Size (Model IV), where: 

• AUCCV and AUCTest refer to the CV and hold-out test set AUC, respectively 
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• Manufacturer, Train Manufacturer and Test Manufacturer are factors (Full, Philips, Siemens, GE (no ERC) 
and GE (ERC)) referring to manufacturer data used during CV, training and testing 

• Architecture is a factor (VGG, ResNet, ConvNeXt, ViT, Factorized ViT) referring to model architecture 

• Convolutional Architecture is a factor (No, Yes) referring to whether the model architecture is convolutional 

• Sequences is a factor (T2W and T2W+DWI+ADC) referring to the sequences used 

• Is Same is a factor (No, Yes) corresponding to whether Train Manufacturer and Test Manufacturer are identi-
cal 

• Test Manufacturer: Is Same is the interaction term between Test Manufacturer and Is Same 

• Clinical is a factor (No, Yes) corresponding to whether clinical information was used 

• Size is a factor (128x128, 192x192) corresponding to input in-plane size 

Analysis of variance (ANOVA) was used to determine if differences within factors were 
statistically significant according to an F-test. If so, posthoc pairwise comparisons were per-
formed using Tukey Honest Significant Differences tests (THSD), which automatically adjusted 
for multiple comparisons within each ANOVA. To further control for multiple testing, we ad-
justed P values using the Benjamini-Hochberg correction (30), considering the total number of 
posthoc pairwise comparisons (n = 25) and a significance threshold and false discovery rate of 
0.05. 

Differences in performance for the cross-validated elastic net-regularized linear classifi-
cation models with and without clinical features were tested using paired Student t tests. 

Implementation and Code Availability 
Training, testing and inference were performed using an internal library developed in PyTorch 
(22). Lightning (31) and MONAI (32) are available in https://github.com/CCIG-
Champalimaud/adell-mri. Training, testing, and inference routines are present in 
lib/entrypoints/classification, while neural network architectures are provided in 
lib/modules/classification. 

Results 

Performance Analyses 
While performance in classification of PCa aggressiveness across different manufacturers and 
ERC use was widely variable (Fig 2A), a few trends were identified during cross-validation. 

Although T2 W sequences provided greater anatomic resolution, using these alone led to 
lower performance (0.04 cross-validation AUC improvement for bpMRI over T2 W, P < .001 for 
THSD in Model I; Fig 2A). Across different data subsets, VGG models outperformed more 
complicated and modern models such as ResNet, ViT or ConvNext; in all cases, the average 
AUC for VGG models was higher than that of other models. VGG models were associated with 
higher AUC (at least 4.0% higher AUC compared with other models; Table 2). ViT-based mod-
els performed worse than convolutional neural network-based models (cross-validation AUC re-
duction of 0.03 for ViT-based models, P < .001 for posthoc THSD in Model II). 
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When considering manufacturer-specific results, models trained on GE (ERC) scanners 
had lower performance than other models (Figs 2A, B.2). Models trained on data from Philips 
scanners and from GE scanners with no ERC performed better than those trained on Siemens 
data, which are twice as prevalent (Fig B.2; Table 3). Performance for models trained and tested 
on all manufacturers was consistent between cross-validation (AUC = 0.71) and the hold-out test 
set (AUC = 0.73). However, an inconsistent drop in performance was observed when models 
were tested on data different from the train data (test set AUC dropped by 0.05, P < .001 for 
THSD; Figs 2B and B.3). This performance drop was more evident across T2-only models, 
models trained on GE data and ViT models trained on Siemens data. Models trained on specific 
scanners generally performed better when tested on data from the same scanner (Figs B.4 and 
2C). However, it should be highlighted that models trained on all manufacturers (Full) recapitu-
lated the within-manufacturer performance and performed similarly across different scanners 
(excluding GE ERC and Siemens data; Table 4). AUC was not independent of architecture dur-
ing cross-validation, and this trend is consistent in the hold-out test set–VGG outperformed all 
other models (test set AUC increase of 0.016 when compared with ResNet, the second best-
performing model P = .014; Table 2). 

These findings were consistent with an alternative ISUP categorization (ISUP = 1–2 ver-
sus ISUP = 3–5), as shown in Figure B.5. 

Sensitivity and specificity of the VGG model on the hold-out test set were 90 ± 2.5% 
(437/486 cases) and 30.4 ± 6% (56/184 cases), respectively, across the five folds. When testing 
the ensemble of the best-performing model (the average of all folds of VGG trained on T2 
W+DWI+ADC from all manufacturers) on an external test set, there was a small drop in perfor-
mance (AUC (bootstrapped 95% CI) = 0.66 (0.62–0.70) for the external test set versus 0.74 
(95% CI: 0.70–0.78) for the hold-out test set. 

Comparison of cross-validation performance between hybrid models and sequence-only 
models revealed that these variables did not lead to improvements in predictive performance 
(Figure B.6, Figure B.7, Figure B.8), with results for the hold-out test set confirming this obser-
vation (P = .24 for F-test for clinical features (Clinical) in Model III ANOVA). Training linear 
classification models with sequence-only probabilities, age, PSA and PI-RADS values as predic-
tors did not improve results (P = .22 for a paired Student’s t test; Figure B.9). However, when 
using the alternative ISUP = 1–2 versus ISUP = 3–5 categorization, the inclusion of clinical vari-
ables led to a performance improvement of 0.04 AUC (P < .001 for a paired Student’s t test; Fig-
ure B.10), indicating that clinical variables were important in limited instances. 

Sensitivity Analysis and Learning Curves 
To better understand the relationship between the amount of data and performance, sequence-
only VGG models with all sequences were trained with different amounts of training data. For 
cross-validated performance, there was an expected relation between training data size and per-
formance for all manufacturers, excluding GE data with ERC (Fig 3A). This trend, however, was 
not as clear for the hold-out test set; while an upward trend was observable in most cases when 
training and testing on the same data, this was unpredictable when testing on data from other 
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manufacturers (Fig 3B). For instance, increasing the amount of Philips data led to improved per-
formance on GE data with no ERC but was detrimental when testing on Siemens data. On the 
other hand, when training with data from all manufacturers, performance improved for all manu-
facturers except GE with ERC, which plateaued at approximately 50% (no better than chance). 

The effect of a larger crop size (192 × 192 × 24) on performance was tested, showing that 
the performance in both the cross-validation and hold-out test sets did not change (Figure B.11; 
P = .92 for F-test for input size (Size) in Model IV ANOVA). 

Association between High-dimensional Features and Scanner Manufacturer, Tar-
get and Protocol 
DL features from the best performing sequence-only T2 W+DWI+ADC VGG fold were first 
visually inspected using t-SNE, showing how samples from the same manufacturer cluster to-
gether. Particularly, GE data with ERC, mostly stemming from data provider B (data providers 
were pseudonymized to preserve confidentiality), shared very few neighbors with samples from 
other manufacturers (Fig 4A). 

Quantitative analysis of feature differences confirmed qualitative findings (Fig 4): data 
derived from the same manufacturer and with the same ERC protocol were, in general, more 
similar than data with the same classification (aggressiveness). 

Discussion 
This work assessed the impact of several factors on the performance of DL models to predict 
PCa aggressiveness on biparametric MRI. Such factors included the use of different model archi-
tectures, sequence combinations (T2 W and T2 W+DWI+ADC), scanner manufacturer, scan pro-
tocols, and the inclusion of clinical variables (age at baseline, total PSA level, PI-RADS score). 
Models performed better when a diffusion weighted sequence was included (cross-validation 
AUC improved by 0.04 when bpMRI was used instead of T2 W alone, P < .001).Performance 
was also better when tested on data acquired using the same manufacturer/protocol as the train-
ing data (test set AUC improved by 0.05 when models were tested on data similar to the train 
data instead of data from other manufacturers, P < .001). Improvements in performance were 
possible with increases in data, but such improvements do not appear to be associated with cross-
manufacturer generalization; indeed, the effect of training and testing on similar data appears to 
affect how data are represented in the DL high-dimensional feature space. 

The main objective of this work was to elucidate how data variability, using data from 
different manufacturers and centers, could provide more robust and clinically applicable models. 
The results presented for the Full models highlighted this. Indeed, the performance of these mod-
els was consistent between training and testing, and this effect did not depend on model architec-
ture. Transformer-based architectures tended to underperform, explained by their lack of induc-
tive biases and larger data requirements. A comprehensive hyperparameter optimization could 
alter some of these observations, as well as improve the performance of other convolutional 
methods. Additionally, models trained using all bpMRI sequences matched the performance of 
models trained using data from specific manufacturers. In contrast, performance dropped when 
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models trained on data acquired using specific manufacturers were tested on different manufac-
turers. This highlights an important aspect of these models—generalizability to different manu-
facturers can only be guaranteed when similar examples are included in the training data. Ana-
lyzing the high-dimensional structure of the hold-out test data confirmed that training models 
with all manufacturers still led to a clear manufacturer and protocol shift in DL features, partly 
associated with ERC use. This may be caused by study-specific aspects, as the relevant signal 
may be weaker in studies using ERC, or by the relatively small dataset size, as GE studies with 
ERC were half as prevalent as GE studies without ERC. Other factors, such as center-specific 
protocols, can also play a role in these differences. Previous work analyzing PI-RADS results 
across 26 centers showed that the positive predictive value for PI-RADS between centers had 
high variability (33). It is possible that some of this variability stems from different scanners 
across different centers. While these manufacturer-specific hurdles are prevalent, we note that 
performance is fairly similar to that exhibited by radiologists. Specifically, our results showed a 
sensitivity and specificity of 90 ± 2.5% and 30.4 ± 6%, respectively, while the PROMIS trial 
showed that radiologists had a sensitivity and specificity of 93% (95% CI = 88%–96%) and 41% 
(95% CI = 36%–46%) (34). A later meta-analysis showed that pooled estimates for the sensitivi-
ty and specificity were 91% (95% CI = 83%–95%) and 37% (95% CI = 29%–46%) (35). 

Models trained using Philips data performed significantly better than models trained us-
ing other data from other scanner manufacturers. This is quite remarkable considering that data 
obtained using Siemens scanners existed at nearly twice the proportion as data obtained using 
Philips scanners in our dataset. This difference in performance was likely not explained by the 
available training data; indeed, through the learning curve analysis, predictive performance for 
models trained and tested using Philips scanners was already significantly higher at relatively 
low fractions of training data. Indeed, while it may be possible to improve performance by in-
cluding more data, it is likely that the numbers required to do so are quite high. A better ap-
proach may be the inclusion of other types of data. A study by Hosseinzadeh and colleagues (36) 
demonstrated that lesion segmentation and detection methods using bpMRI prostate examina-
tions benefit from more data and anatomic (ie, prostate zone segmentation) information. 

This study had important limitations. This work should act as a proof-of-concept showing 
that i) DL methods without anatomic information can predict PCa and ii) important sources of 
variability captured only by large datasets led to striking differences in performance. Despite its 
less demanding requirements, a potential caveat of this research was its performance when com-
pared with other models using high quality lesion annotations (9,10,37,38). Furthermore, the 
concrete definition of aggressiveness in this study can be contested. Some works indicate larger 
differences in outcome between ISUP grades 1 and 2 (39), while others indicate larger differ-
ences between grades 2 and 3 (3). However, by repeating our analysis using ISUP grades 1–2 
versus ISUP grades 3–5, we showed that our conclusions hold regardless of the characterization. 
Additionally, even though an informal exploration of hyperparameters (learning rate and weight 
decay) was performed, it is imperative for future endeavors to substantially enhance this search 
process to improve the performance of these models (ie, determining the best patch size for ViT-
based models or include a better study of the initial convolutions for convolutional methods). 
Moreover, DL research moves at a rapid pace, and better models and optimization techniques are 



 
 

Page 11 of 44 
 

likely to appear as time progresses; therefore, future analyses should strive to expand this aspect 
to a more complete exploration. Similarly, while an assessment of the impact of clinical features 
was performed, this was incomplete and showed potential only in limited scenarios. Other clini-
cal and molecular variables—particularly PSA density or the genetic and molecular characteriza-
tion of PCa—may further help in classifying Pca aggressiveness, as hinted by previous work 
(40–42). Additionally, a prospective evaluation of these models is key to better understanding 
how alterations to clinical practice may lead to model drift, a pervasive issue in machine learning 
models known to cause performance deterioration (43). Finally, given that the dataset was 
sourced from European centers and that no information on patient race/ethnicity was available, 
models developed using these data could suffer from biases that cause them to underperform in 
underrepresented populations (44,45). 

In conclusion, this study demonstrated a substantial impact of scanner manufacturers and 
scan protocol on the performance of classification models to classify PCa aggressiveness on par-
ametric MRI. This effect was reduced when models were trained on data similar to that used dur-
ing testing, and feature distribution was largely affected by scanner manufacturer and scan proto-
col. The addition of clinical features did not lead to consistent improvements in model predictive 
performance. This work can be further improved by replicating its findings in terms of lesion 
segmentation and detection with segmentation annotations, by including other relevant clinical 
information such as molecular features, by prospectively validating these results, or with a more 
consistent hyperparameter search method during training. Additionally, increasing the fairness of 
the model by including fairness analyses in terms of sensitive attributes such as age, race and 
ethnicity can further improve the impact of this work. 
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Figure 1: Flow diagram of studies according to selection criteria and bottlenecks. The 
five-fold cross-validation set and hold-out test set were selected using the least com-
plete set of data so that models can be compared. Sequences that were not usable in-
cluded sequences with missing slices or relevant metadata, such as image position, or 
wrong sequences, such as fat-suppressed T2-weighted images. T2 W = T2-weighted. 
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DWI = diffusion weighted imaging. ADC = apparent diffusion coefficient. PCa = prostate 
cancer. 
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Figure 2: Model performance in cross-validation and hold-out test sets. (A) Cross-
validation area under the receiver operating characteristic curve (AUC) values for differ-
ent models on different manufacturer datasets. (B) Comparison of cross-validated (CV) 
and test AUCs. (C) Test AUCs of models trained and tested on different scanners. In all 
panels, colored points represent the average, and the vertical/horizontal lines represent 
standard errors. In a and c, the black horizontal lines represent the range of AUC 
scores. Facets in c represent the training and testing data subset. T2 W = T2-weighted. 
DWI = diffusion weighted imaging. ADC = apparent diffusion coefficient. ERC = en-
dorectal coil. 
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Figure 3: Learning curve analysis demonstrating the relationship between the amount 
of training data and cross-validation (CV) and hold-out test set AUCs. (A) Learning 
curve for CV AUC. (B) Learning curve for hold-out test set AUC stratified by test set 
manufacturer. Points represent the average estimates for all folds, and the shaded area 
represents the standard error for each estimate (each estimate is the average perfor-
mance across 5 folds). Colors represent the testing manufacturer. Shaded areas repre-
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sent the standard error. T2 W = T2-weighted. DWI = diffusion weighted imaging. ADC = 
apparent diffusion coefficient. ERC = endorectal coil. 
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Figure 4: Analysis of deep feature distribution. (A) t-distributed stochastic neighbor 
embedding (t-SNE) visualization of all data (n = 669 studies; first column, first row) and 
stratified by manufacturer (second column, first row), by aggressiveness (first column, 
bottom row) and by data provider pseudonym (second column, bottom row). The em-
bedding is the same across panels, and t-SNE1 and t-SNE2 represent the t-SNE di-
mensions. (B) Optimal transport dataset distance between different data subsets. The 
colors correspond to different aggressiveness comparisons, and the saturation of each 
grid cell corresponds to the distance between data subsets (higher saturation values, ie, 
cell grids that are “more green” or “more red,” imply greater dissimilarity). Cells sur-
rounded by black lines correspond to between-class (aggressive, nonaggressive) and 
within-manufacturer/protocol (GE with ERC, GE without ERC, Philips, Siemens) com-
parisons. ERC = endorectal coil. 
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Table 1 

Number of Studies Used in Training and Internal Validation (Hold-out Test Set), 
Stratified by Manufacturer 
Manufacturer ISUP = 1 ISUP = 2 ISUP = 3 ISUP = 4 ISUP = 5 Total 
Train set 
GE (ERC) 143 (28.9%) 191 (38.6%) 88 (17.8%) 51 (10.3%) 22 (4.4%) 495 
GE (no ERC) 216 (22.7%) 417 (43.9%) 170 (17.9%) 55 (5.8%) 92 (9.7%) 950 
Philips 550 (37.0%) 525 (35.3%) 251 (16.9%) 87 (5.8%) 75 (5.0%) 1488 
Siemens 515 (24.5%) 804 (38.2%) 342 (16.3%) 185 (8.8%) 256 (12.2%) 2102 
Train set (with T2 W+DWI+ADC, total PSA level, age at baseline) 
GE (ERC) 86 (29.9%) 111 (38.5%) 51 (17.7%) 30 (10.4%) 10 (3.5%) 288 
GE (no ERC) 74 (17.6%) 179 (42.6%) 77 (18.3%) 40 (9.5%) 50 (11.9%) 420 
Philips 558 (37.6%) 534 (36.0%) 241 (16.2%) 83 (5.6%) 69 (4.6%) 1485 
Siemens 516 (24.2%) 791 (37.0%) 356 (16.7%) 192 (9.0%) 280 (13.1%) 2135 
Hold-out test set 
GE (ERC) 14 (31.8%) 16 (36.4%) 7 (15.9%) 5 (11.4%) 2 (4.5%) 44 
GE (no ERC) 17 (19.8%) 37 (43.0%) 17 (19.8%) 6 (7.0%) 9 (10.5%) 86 
Philips 84 (37.5%) 81 (36.2%) 36 (16.1%) 13 (5.8%) 10 (4.5%) 224 
Siemens 69 (21.8%) 124 (39.2%) 55 (17.4%) 25 (7.9%) 43 (13.6%) 316 
Total 
GE (ERC) 157 (29.1%) 207 (38.4%) 95 (17.6%) 56 (10.4%) 24 (4.5%) 539 
GE (no ERC) 233 (22.5%) 454 (43.8%) 187 (18.1%) 61 (5.9%) 101 (9.7%) 1036 
Philips 634 (37.0%) 606 (35.4%) 287 (16.8%) 100 (5.8%) 85 (5.0%) 1712 
Siemens 584 (24.2%) 928 (38.4%) 397 (16.4%) 210 (8.7%) 299 (12.4%) 2418 

Note.—Data reported as number (percentage), unless otherwise indicated. ADC = apparent diffusion coefficient, 
DWI = diffusion-weighted imaging, ERC = endorectal coil, ISUP = International Society of Urological Pathology, 
PSA = prostate-specific antigen, T2 W = T2-weighted. 

Table 2 

Cross-validation and Hold-out Test Set AUC Comparison between VGG and Other 
Models 
Model Difference to VGG 95% Confidence Interval Adj. P Value 
Cross-validation 
ResNet −0.041 [-0.07,-0.01] 0.004 
ConvNeXt −0.041 [-0.07,-0.01] 0.005 
Regular ViT −0.049 [-0.08,-0.02] <0.001 
Factorized ViT −0.061 [-0.09,-0.03] <0.001 
Hold-out test set 
ResNet −0.016 [-0.030,-0.002] 0.014 
ConvNeXt −0.017 [-0.031,-0.004] 0.006 
Regular ViT −0.017 [-0.031,-0.004] 0.007 
Factorized ViT −0.024 [-0.037,-0.010] <0.001 

Note.—P values were calculated using Tukey Honest Significant Differences tests following a significant analysis 
of variance for linear Model I. ViT–vision transformer. 
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Table 3 

Difference in Cross-validation AUC between Training and Validation Manufactur-
ers (Manufacturer 1–Manufacturer 2) 
Manufacturer 1 Manufacturer 2 Difference in AUC 95% Confidence Interval Adj. P Value 
GE (ERC) Full 0.003 [-0.028, 0.034] >0.99 
GE (no ERC) Full 0.073 [0.042, 0.104] <0.001 
GE (no ERC) GE (ERC) 0.070 [0.039, 0.101] <0.001 
Philips Full 0.058 [0.028, 0.089] <0.001 
Philips GE (ERC) 0.055 [0.025, 0.086] <0.001 
Philips GE (no ERC) −0.015 [-0.046, 0.016] 0.715 
Siemens Full −0.041 [-0.072,-0.011] 0.004 
Siemens GE (ERC) −0.044 [-0.075,-0.014] 0.002 
Siemens GE (no ERC) −0.115 [-0.146,-0.084] <0.001 
Siemens Philips −0.100 [-0.131,-0.069] <0.001 

Note.—Differences in performance, their respective intervals and the associated P values were calculated using the 
Tukey Honest Significant Differences test following a significant analysis of variance for manufacturer in Model I. 
ERC = endorectal coil. 

Table 4 

Hold-out Test Set AUC Differences between Models Trained on All Data and Mod-
els Trained and Tested on Specific Scanners 
Training/Testing Manufacturer Difference in AUC 95% Confidence Interval Adj. P Value 
GE (ERC) −0.125 [-0.160,-0.090] <0.001 
GE (no ERC) −0.027 [-0.062, 0.008] 0.363 
Philips 0.026 [-0.009, 0.062] 0.374 
Siemens −0.045 [-0.080,-0.010] 0.004 

Note.—Differences in performance, their respective intervals and the associated P values were calculated using the 
Tukey Honest Significant Differences test following a significant analysis of variance for training manufacturer in 
Model III. ERC = endorectal coil. Negative values imply better performance from models trained on all data, posi-
tive values imply otherwise.  
 
 

Supplementary Methods 

Deep-learning Model 

Selection 
These models were selected as they represented a small yet comprehensive selection of models 
between convolutional-and transformer-based. Additionally, the inclusion of ResNet and Con-
vNeXt models also allowed us to assess how residual connection-based models would perform 
on this task. Finally, we note that the hyperparameter selection was performed such that these 
models would be sufficiently similar to those originally published. Before training, a few ad hoc 
experimental runs were performed to ensure each model would converge when trained on all of 
the data (this was done without assessing the performance on any hold-out test set). 
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Hyperparameters 

ViT and Factorized ViT 
• batch size = 64 (32 per GPU) 

• patch size = 16 × 16 × 4 

• learning rate = 5 ∗ 10−5 

• weight decay = 0.1 

• dropout rate = 0.1 

• Image embedding was performed using a convolutional layer with kernel size and stride identical to patch size 

• Learnable position embeddings 

• Architecture: 8 transformer blocks, 512 tokens split across 8 heads (64 features *per* head) 

ConvNeXt and VGG 
• batch size = 128 (32 per GPU) and 64 (16 per GPU) 

• warmup steps = 10 

• learning rate = 5 ∗ 10−4 

• weight decay = 0.005 

• dropout rate = 0.1 

• VGG Architecture: 3 standard VGG blocks (details in Table A.1) 

• ConvNeXt Architecture: 4 standard ConvNeXt blocks (details in Table A.1) 

ResNet 
• batch size = 64 (32 per GPU) 

• warmup steps = 10 

• learning rate = 0.001 

• weight decay = 0.005 

• dropout rate = 0.1 

• GeLU activation function and batch normalisation 

• Structure: four residual blocks, each composed of 3 residual layers with 32, 64, 128 and 256 features 

Hybrid Model 
A hybrid model is composed of two distinct parts—a standard image classification model, iden-
tical to those described in the Methods section, a tabular network, which takes tabular (a vector 
of features) features as input and produces a probability score. Both the image and tabular net-
works produce a nonnormalized probability score (logit)—pimage and pclinical for image and clini-
cal predictions, respectively—and these are combined using a trainable weight 
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 to obtain a final prediction pfinal = sigmoid(wcomb × pimage + (1–wcomb) × 
pclinical). In other words, a hybrid model simply combines the nonnormalized probability pro-
duced by the image network with the nonnormalized probability produced by the tabular network 
using a learnable weight. The sigmoid of this linear combination is then used to obtain a value 
between 0 and 1. 

Details Regarding Factorized ViT and Convolutional Embedding 
The factorized ViT architecture was highly similar to that of a 3D ViT with the separation of 
within-and between-slice feature extraction. To clarify details regarding ViT-based architectures, 
we first introduce the forward pass for ViT architectures. Then, we introduce the forward pass in 
factorized ViT architectures. Finally, we explain how the embedding can be replaced by a convo-
lutional operation in both regular and factorized ViT architectures. 

Embedding and transformer application in ViT architectures.— 

Given a three-dimensional input with c channels I ∈ Rc×h×w×d, a patch size P = [x, y, z] and num-
ber of patches np = h⁄x × w⁄y × d⁄z × c: 

1. The input I is “embedded” such that . This ensures that the input is adequate for a trans-
former (1) — each patch is a “token” and the number of values in this token is its embedding size 

2. (optional) a positional embedding can be added to the input to incorporate spatial information 
3. (optional) the embedding size can be altered using a linear projection 

A Sequence of t Transformers Is Applied to This Input 
Embedding and transformer application in factorized ViT architectures.— 

Given, a three-dimensional input with c channels I ∈ Rc×h×w×d, a patch size P = [x, y] and number 

of patches : 

1. The input I is “embedded” such that . Here, the true number of tokens is np × z, 
while the embedding size is x × y × c 

2. (optional) same as for regular ViT 
3. (optional) same as for regular ViT 
4. Afterwards, a sequence of twith in slice transformer blocks is applied to Iwith in slice. It should be noted that, at this 

stage, transformer blocks operate only on within slice information 

5. An aggregation operation turns Iwith in slice into . This aggregation operation can be, 
for instance, the average over the z axis or a classification token 

6. A set of twith in slice transformer blocks is applied to Ibetween slice 

To ensure that a similar number of parameters is used in regular ViT and factorized ViT 
architectures, we project both Ilinear and Iwith in slice to have the same positional embedding and em-
bedding sizes (this is achieved as specified in 3., using a linear projection) and set twith in slice and 

( )'
comb combw sigmoid w=

( )pn x y z c
linearI R ´ ´ ´ ´Î

p
h wn c
x y

= ´ ´

( )pz n x y c
withinsliceI R ´ ´ ´ ´Î

( )pn x y c
betweensliceI R ´ ´ ´Î
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tbetween slice such that t = twith in slice + tbetween slice. For simplicity, and since t is a pair number, 

. 

Convolutional embedding.— 

Replacing the image embedding operation described above with a 3D convolutional layer is rela-
tively simple and can be used to replace steps 1 and 3 by an operation that calculates an embed-
ding of size E for every patch. Indeed, this can be achieved for regular ViT architectures by i) 
applying a 3D convolutional layer with stride (patch size) P = [x, y, z] to the input 

 and ii) reshaping it such that . 
For factorized ViT architectures, a 2D convolutional layer with stride (patch size) P = [x, y] is 

applied to the input , which is then reshaped to 

. 

Details Regarding Initialization and Training 

Model Implementation and Initialization 
All models are implemented using PyTorch (2) in an in-house library (https://github.com/CCIG-
Champalimaud/adell-mri) using the default initialisation in PyTorch for all layers excluding po-
sitional embeddings (initialized with a truncated normal distribution with mean 0, standard devi-
ation 0.02 and lower and upper bounds set to-2 and 2, respectively). 

Augmentations 
We used a wide array of augmentations from MONAI (3), namely: 

• Identity (no transform) 

• Random contrast adjustment (γ = [0.5, 1.5]) 

• Random standard shift in intensity (range = [−0.1, 0.1]) 

• Random shift in intensity (range = [−0.1, 0.1]) 

• Random Rician noise (std = 0.02) 

• Random bias field (degree = 3 (T2W-only)) 

• Affine transforms (translation range = [4, 4, 1], ) 

• Horizontal flip 

Each study is augmented with one of the aforementioned transforms, which is picked at 
random with uniform probability. 

2 withinslice betweenslice
t t t= =

h w dE
c h w d x y z
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Training 
Each model is trained for 100 epochs and the best performing checkpoint on the validation set is 
picked for further evaluation (this avoided the optimization of an early stopping criteria). For 
training, we used an AdamW optimizer (4) with the learning rate/weight decay parameters speci-
fied above; a binary cross-entropy loss was used. 

Dataset Distances 
To calculate dataset distances, we use the formulation of the Wasserstein 2-distance noted by 
Alvarez-Melis and Fusi (5). In short, for a given dataset of feature vectors D with n samples and f 
features, we calculate the Wasserstein 2-distance between any two nonoverlapping subsets 

 and . To do this, we first assume that the features in each subset follow a 
multivariate normal distribution and calculate the mean (μA and μB) and covariance (ΣA and ΣB) 
of each subset. Finally, using the fact that the Wasserstein 2-distance of two multivariate Gaussi-

an distributions can be calculated as , we 

can feasibly calculate a simple and closed-form estimate of the optimal transport (here calculated 
as the Wasserstein 2-distance) between two datasets. 
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Figure S1: Magnetic field strength by manufacturer, stratified by studies with only T2 
W sequences and by studies with all three (T2 W+DWI+ADC) sequences. 
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Figure S2: Difference between the average cross-validation AUC of models trained 
on different manufacturers. The color corresponds to the difference, whereas the text on 
each cell corresponds to the difference and to the P value of a sum of ranks test com-
paring both. Black text implies statistical significance (P < .05 according to a Tukey 
Honest Statistical Differences test following a statistically significant analysis of variance 
for manufacturer in Model I), whereas gray text signals the absence of statistical signifi-
cance. 
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Figure S3: Test area under the curve (AUC) of different models on different manufac-
turer testing datasets. 



 
 

Page 34 of 44 
 

 
Figure S4: Test AUC of models trained and tested on different scanners. The text cor-
responds to the average, minimum and maximum AUC values (minimum and maximum 
values are between brackets) and the color corresponds to the average AUC value. 
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Figure S5: Model performance in CV and hold-out test sets for alternative ISUP cate-
gorization (ISUP = 1–2 versus ISUP = 3–5). (A) Cross validation area under the curve 
(AUC) for different models on different manufacturer datasets. (B) Comparison of cross-
validated (CV) and test area under the curve (AUC). (C) Test AUC of models trained 
and tested on different scanners. In all panels colored points represent the average and 
the vertical/horizontal lines represent standard errors. In a and c the black horizontal 
lines represent the range of AUC scores. Facets in c represent the training and testing 
data subset. 
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Figure S6: Comparison of AUC for sequence-only and hybrid models. Each point rep-
resents the average AUC, whereas the vertical and horizontal error bars represent the 
mean with the addition and subtraction of the standard error, respectively. The diagonal 
dashed line represents equality between both axes. 
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Figure S7: Cross validation area under the curve (AUC) of different hybrid models 
(bpMRI + clinical) on different manufacturer datasets. 
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Figure S8: Comparison of hold-out test set AUC for sequence-only and hybrid mod-
els. Each point represents the average AUC, whereas the vertical and horizontal error 
bars represent the mean with the addition and subtraction of the standard error, respec-
tively. The diagonal dashed line represents equality between both axis. 

 
Figure S9: Difference between sequence-only and elastic net-regularized linear clas-
sification model AUC. Both CV (x axis) and test (y axis) AUC is represented, with the 
average value noted as circle at the intersection of the dashed lines. The P values 
shown in the figure were obtained using a paired Student t test. 
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Figure S10: Difference between sequence-only and elastic net-regularized linear 
classification model AUC for alternative ISUP categorization (ISUP = 1–2 versus ISUP = 
3–5). Both CV (x axis) and test (y axis) AUC is represented, with the average value not-
ed as circle at the intersection of the dashed lines. The P values shown in the figure 
were obtained using a paired Student t test. 
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Figure S11: Impact of crop size on cross-validation (A) and hold-out test set AUC (B). 
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Table A1 

Detailed Architecture Specifications for the VGG and ConvNeXt Models 
 VGG ConvNeXt 

block 1 Conv (64, 3 × 3x3) 
Conv (128, 3 × 3x3) 
Pool (max, 2 × 2x2) 

Conv (32, 7 × 7x5) × 6 
Pool (max, 2 × 2x2) 

block 2 Conv (128, 3 × 3x3) 
Conv (256, 3 × 3x3) 
Pool (max, 2 × 2x2) 

Conv (64, 7 × 7x5) × 6 
Pool (max, 2 × 2x2) 

block 3 Conv (256, 3 × 3x3) 
Conv (512, 3 × 3x3) 
Pool (max, 2 × 2x2) 

Conv (128, 5 × 5x3) × 6 
Pool (max, 2 × 2x2) 

block 4  Conv (256, 5 × 5x3) × 6 
Pool (max, 2 × 2x2) 

Table C.1 

Nonextensive Summary of Other Deep-learning Studies on Prostate Cancer Ag-
gressiveness Prediction 
Number Examinations No. Centers Lesion Location Requirements Best AUC Target Ref. 
592 5 bounding box 0.81 ISUP = 1 versus ISUP > 1 (6) 
341 1 bounding box 0.84 ISUP = 1 versus ISUP > 1 (7) 
99 1 none 0.78 ISUP = 1 versus ISUP > 1 (8) 
112 1 lesion location 0.88 ISUP = 1,2 versus ISUP > 2 (9) 
376 4  0.86 ISUP = 1,2 versus ISUP > 2 (10) 
8056 2 segmentation masks 0.86 ISUP = 1 versus ISUP > 1 (11) 

Table C.2 

Centres Participating in Data Provision for Prostatenet 
Centres Country 
Champalimaud Foundation Portugal 
Candiolo Cancer Institute Italy 
General Anti-Cancer and Oncological Hospital of Athens Greece 
Hacettepe University, School of Medicine, Department of Radiology Turkey 
Fundacion Para La Investigacion Del Hospital Universitario La Fe De La Comunidad Valenciana Spain 
Fundacio Institut D’Investigacio Biomedica De Girona Doctor Josep Trueta Spain 
Institut Paoli-Calmettes France 
JCC Diagnostic Imaging Portugal 
National Cancer Institute Lithuania 
QS Instituto de Investigacion e Innovacion SL Spain 
RadboudUMC Netherlands 
Royal Marsden National Health Service Trust United Kingdom 
University of Pisa Italy 
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Table C.3 

Mean and Standard Deviation (Std.) For Age and Prostate Specific Antigen (PSA) 
Stratified by Validation Folds and Hold-out Test Set 
Fold Age Age Std. PSA PSA Std. 
CV1 66.60 8.41 11.49 14.98 
CV2 66.13 7.21 12.55 18.69 
CV3 66.62 8.33 12.44 29.52 
CV4 66.19 7.83 15.47 56.69 
CV5 65.85 7.90 14.31 46.15 
Hold-out test set 66.47 8.39 13.17 24.99 

Table C.4 

PI-RADS Frequency for the Data Used During This Study 
PI-RADS Frequency 
0 4.1% 
1 0.9% 
2 2.1% 
3 7.8% 
4 44.1% 
5 40.9% 
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