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Abstract: - Anatomical magnetic resonance images are affected by different types of noise, including thermal, 

motion, radio interference, and magnetic field inhomogeneities. In a clinical setting, acquiring MR images of 

the highest quality is not always feasible. Quantitative and artificial intelligence-based decision support tools 

require high-quality data to accurately differentiate among pathological conditions, avoiding diminishing the 



clinical relevance of a diagnostic model. A fully convolutional model with no pooling layers was trained on a 

set of noisy images, with the ground truth being the original image without the noise. Different levels of noise 

were incorporated into the training set. The experiments showed a reduction in noise levels, but it can impact 

quantification tasks when T2ws without noise are provided to the model. Six types of pairs of original T2w 

image slices and the corresponding slices with synthetic noise were generated with various thresholds of 

Gaussian noise, spanning from 4% to 14%. In total, 38500 pairs were utilized for convergence and evaluation 

of the proposed denoising models. The examined deep denoiser reduced improved image quality by up to 

18.2% peak signal-to-noise ratio (PSNR), overall across the aforementioned noise thresholds. 
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1 Introduction 

1.1 Background for Denoising 

Noise reduction, also referred to in image 

processing as denoising, is a key preprocessing step 

in image analysis, which is frequently a necessity 

for accurate quantitative and qualitative analyses. 

Ideally, the noisy information should be minimized 

without compromising the underlying texture 

component during denoising. 

High-resolution magnetic resonance (MR) 

examinations with a high signal-to-noise ratio 

(SNR) allow imaging with more detailed anatomical 

features, boosting the diagnostic power of a model 

and aiding in the accurate detection of illnesses. In 

real-life clinical scenarios, often the SNR can be 

reduced due to the nature of MR imaging, protocols 

for faster image acquisition, and other 

environmental variables [1]. There are various other 

ways of achieving higher quality with high SNR in 

MR scans, including increasing the number of 

acquired slices, utilizing a strong magnetic field, 

and adjusting the acquisition bandwidth. However, 

some of those methods for increasing the scan 

quality also increase the acquisition time, thereby 

introducing significant costs in a clinical setting. 

Therefore, several denoising methods can be 

employed to further enhance the quality of MR 

scans in examinations with low SNR. In particular, 

deep learning (DL) techniques for noise reduction 

have gained popularity in recent studies [2-4] 

because of their texture reconstruction and edge-

preserving properties. 

Endorectal coil (ERC) MR imaging is used in 

prostate examinations because of its distinct 

advantage it has over surface array coils in terms of 

image quality, free from artifacts in the area of 

interest. This technique provides high-resolution 

scans, which are necessary for optimal visibility of 

the prostate anatomy and other surrounding regions 

of interest, as well as detecting cancerous tissue. 

However, using ERC has some key drawbacks, such 

as cost and a painful or inconvenient application. 

This may result in patients refusing future MRI 

examinations, which could lead to a late diagnosis 

or inefficient monitoring of the condition. Deep 

learning denoising can address this by enhancing 

surface prostate MRI, rendering unnecessary the 

need for an intrusive ERC and, therefore, changing 

the way prostate cancer scans are currently acquired. 

A key advantage of using deep learning-based 

models over traditional image processing denoising 

methods such as average or median filtering is that 

the parameters of the deep model are optimized 

during training on the examined images, while with 

traditional denoising, a predefined algorithm is used. 

Unlike traditional methods, deep learning denoising 

preserves the edges and granular details in texture. 

This is not the case with traditional methods, which 

overly smooth the original signal, introducing blurry 

textures into the image. Despite the popularity of 

DL in many image processing and analysis 

applications, only a handful of studies have been 

published regarding denoising in medical imaging. 

Employing these types of commercial or open-

source DL methods in computed tomography (CT) 

for several anatomical areas, including abdominal 

scans for renal cancer [5], liver [6], lung [7], and 

pelvis [8], led to significant image quality 

enhancements. Kidoh et al. [9] successfully applied 

three types of DL denoising architectures for brain 

MRI. The fully-convolutional architectures 

advanced denoising by featuring novel layers such 

as soft shrinkage, in which a custom activation 

function is trained to adapt to the noise levels, and 

discrete cosine transform layers, where the input 

examinations are processed in the frequency 



domain. Wang et al. [10] implemented a diverse set 

of denoising models with prostate MR data from 

different acquisition protocols. Siemens Deep 

Resolve [11] employs a comparable methodology 

wherein a deep learning model is utilized to reduce 

the acquisition time of an MRI. In particular, the 

author found that the DL-based method for 

reconstructing non-ERC images performed the best 

out of the models that were tested. This could 

indicate that a simple protocol with DL denoising 

could be used in the clinic. 

1.2 Study’s Contribution 

In this paper, a custom fully convolutional deep 

learning-based architecture was tested in the context 

of denoising for T2w magnetic resonance images of 

the prostate. To the best of our knowledge, this is 

the first MRI DL denoiser that makes use of a 

structural similarity-based loss function, which is 

proposed as an alternative to the widely used peak 

signal-to-noise ratio-based loss functions. 

Additionally, the impact of such a preprocessing 

task on radiomics was also examined. 

 

2 Problem Formulation 
The T2-weighted images of the ProstateX dataset 

[12] were used to train and evaluate the DL 

denoising models. The scans were produced using 

two Siemens 3T MRI scanners, the MAGNETOM 

Skyra and Trio. T2-weighted images with a 

resolution of roughly 0.5 mm in plane and a slice 

thickness of 3.6 mm were obtained using a turbo 

spin echo procedure. There are two patient cohorts 

available: a) 203 patients with their clinical data, 

gland and lesion annotations; and b) 143 patients 

with only the multi-parametric MRI available. In the 

context of this task, all 346 scans were used since 

only the imaging data without annotations was 

required for the convergence of the denoising 

models. The publicly accessible PI-CAI dataset [13] 

was used as an unseen external validation set to 

quantify the impact of DL denoising on the stability 

of radiomics. The overlapping MRI examinations of 

the ProstateX and PI-CAI were removed prior to the 

radiomic analysis. 

 

3 Problem Solution 

3.1 MR Images Stratification for Deep Learning 

Denoising 

The examined dataset of 326 patients was split 

into three different sets on a patient basis. The 

training set consisted of 276 patients, and it was 

used for fitting the deep learning models. A 

validation set of 25 patients was used for tuning the 

parameters of the deep learning models, early 

stopping, and assessing the status of overfitting 

during training. Finally, an unseen testing set of 25 

patient scans was utilized for the model evaluation 

protocol, providing a fair and robust assessment of 

the denoising effectiveness. The models were 

trained and evaluated on a slice-basis, yielding 

approximately: a) 5500 unique slices for the training 

set, b) 450 slices for the validation set, and c) 470 

slices for the testing set. 

3.2 Image Preprocessing 

A protocol for selecting the highest quality of 

MRI examinations was established to ensure that the 

best slices are used for model convergence and 

evaluation. An experienced radiophysicist evaluated 

all 346 T2-weighted scans of the publicly accessible 

ProstateX dataset. As a result, 20 scans 

(approximately 6% of the dataset) were rejected due 

to severe noise, motion, and other types of artifacts. 

Additionally, to mitigate the variation in spacing 

across the MRI examinations, aspect ratio-

preserving reshaping with zero-padding and 

interpolation was applied to the original scans. This 

resulted in a pixel array of 384 by 384 pixels across 

all the slices. Prior to the analysis, the pixel 

intensities of the MRI slices were normalized. A 

Gaussian noise pattern was assumed for generating 

the synthetic noisy slices. Six noisy images for each 

real slice were generated with noise thresholds 

spanning from 4% to 14%. Therefore, 

approximately 38,500 noisy slices were used for 

convergence and evaluation of the examined deep 

denoising models. A few noisy slices are depicted in 

Fig. 1. 

3.3 Image Augmentation 

 
Fig. 1 An original (a) prostate T2w slice with 

different levels of noise (4-12%, b-f) applied. 

 



In the context of DL analysis, this step is 

essential for increasing the number of samples that 

are used during model fitting and also to minimize 

overfitting of the deep models. Aside from 

increasing the training sample count, data 

augmentation results in translation, perspective 

invariance, and artificially introduced variety in the 

examined dataset, which strengthens the 

generalization power of the deep models. Four types 

of transformations were performed: 1) pixel flipping 

from right to left, 2) pixel flipping from top to 

bottom, 3) 90-degree image rotation, and 4) 270-

degree image rotation. The final training was 

comprised of approximately 132,000 slices. A 

sample of augmented data is presented in Fig. 2. 

3.4 Deep Learning Architecture for Denoising 

Four (4) fully-convolutional architectures were 

examined: a) a convolutional autoencoder with 

residual connections (CrAE), b) a denoising 

convolutional network (DnCNN [14]), c) a 

denoising convolutional network with residual 

connections (DrCNN), and d) a real image 

denoising network (RIDNet [15]). The fully-

convolutional models were trained with a supervised 

learning strategy employing pairs of images; the 

high-quality ground truth image and the slice with 

synthetic noise. In most studies, mean squared error 

(MSE) is used as a loss function, despite the fact 

that this type of metric does not capture the 

statistical distribution of texture in an image. During 

hyperparameter optimization, the structural 

similarity index measure [16] (SSIM) was identified 

as a better method to formulate the cost function of 

the denoising task. The adaptive moment estimation 

(ADAM) was to minimize the proposed SDI loss 

between the ground truth and the noisy slice. An L1 

penalty was applied to the kernels of each layer, 

constraining the trainable weights of the model from 

taking outlier values and consequently preventing 

the model from learning noisy representations that 

can lead to overfitting. Residual connections were 

incorporated into the model’s architecture to prevent 

the vanishing gradients [17] effect of the very deep 

convolutional networks. The integration of the soft-

shrinkage activation function [18] was a key 

integration in the proposed fully convolutional 

architecture because it allowed the network to learn 

representations that were proportional to the noise 

power levels of the examined dataset. 

3.5 Hyperparameter Optimization 

This process was very important to the success of 

the denoising task because hyperparameters are the 

least reported information in the published studies, 

and their value is dependent on the dataset that is 

used. Using how well the model performed, the 

optimization was done on the validation set to find 

the best model parameters. These parameters are 

comprised of learnable elements of the architecture 

(number of modules, kernels, and neurons) as well 

as other fundamental factors such as the learning 

rate, optimizer, activation functions, kernel 

initializers, and regularization penalties. To 

minimize model overtraining, obtain the most 

optimal model, and prevent redundant training 

iterations, early-stopping was implemented with a 

threshold of 20 epochs after minimizing the 

validation loss function. Furthermore, comparing 

the learning curves for loss can reveal information 

about the fitting state of the deep model. Therefore, 

to assess the denoising performance and model 

generalization ability, the learning curves were 

examined by juxtaposing the minimum distance 

between the training and validation loss curves. 

3.6 Imaging Feature Extraction 

Radiomic features were extracted from the whole 

gland on T2w MRIs using the Pyradiomics open-

source Python package [19]. These radiomic 

features consist of shape, first-order statistics, Gray 

Level Cooccurence Matrix (GLCM), Gray Level 

Run Length Matrix (GLRLM), Gray Level Size 

Zone Matrix (GLSZM), Neighbouring Gray Tone 

Difference Matrix (NGTDM), and Gray Level 

Dependence Matrix (GLDM) features.  Apart from 

shape features, other texture features were also 

computed after applying wavelet and Laplacian 

transforms of Gaussian (LoG) transformations to the 

images, leading to a total of 1140 radiomic features 

per patient. 

The distribution of these imaging features in the 

“excellent”, “good”, “modest” and “poor” stability 

 
Fig. 2 Data augmentation applied to a slice of the 

training cohort. This includes flipping the original 

image (a) from top to bottom (b) and right to left 

(c), rotating 270o (d) and  90o (e). 

 

 



category, for each preprocessing pipeline is 

proposed. 

3.7 Evaluation of Model’s Performance 

The evaluation of the proposed methodology was 

conducted exclusively on the unseen testing set as: 

a) qualitative assessment by experienced 

radiophysicists, and b) quantitative evaluation using 

the juxtaposition of noisy versus denoised images 

with metrics such as SSIM (Eq. 1), and PSNR (Eq. 

2). 

SSIM encapsulates three key factors for 

comparing the aforementioned pair of slices: a) 

luminance (captures the pixel distortions for brighter 

regions, Eq. 3), b) contrast (captures the pixel 

distortions of regions with high diversity, Eq. 4), 

and c) structure (a sliding window calculates the 

statistical local dependencies of texture regions, Eq. 

5). 

Therefore, the proposed loss integrates these 

three factors, and it is formulated as an index that 

captures the structural differences (SDI, Eq. 6) 

between two images. 

   (1) 

 

                          (2) 

 

                                      (3) 

 

                                     (4) 

 

                                       (5) 

 

                             (6) 

4 Results  

4.1 Convergence of Deep Models 

The DL denoiser was trained on a workstation 

equipped with a thirty-two threaded AMD 

processor, two hundred and fifty four gigabytes of 

RAM, and a twenty-four gigabyte NVidia RTX 

graphics card. The T2w slices were split on a patient 

basis into the training set for model convergence, 

the validation set for early-stopping, and the unseen 

testing set for evaluating the model. 

The comparison of the training and validation 

loss, also known as learning curves, facilitated a 

thorough assessment of the degree of model 

convergence. In Fig. 3, the SDI validation loss was 

minimized at the 89th epoch, while early stopping 

kicked in at the 109th epoch as the deep model starts 

to overfit. The architecture that achieved the best 

convergence was the custom DnCNN with residual 

connections. 

4.2 Texture Quality Evaluation – Structural 

Similarity 

The internal validation of the denoising model 

was performed on the unseen testing set based on 

the ProstateX dataset. This enabled the 

identification of the best performing deep 

architecture out of ones that were tested for 

denoising in terms of image quality improvements. 

In particular, the denoised image was better up to a 

20% in terms of SSIM compared to the noisy image, 

when both juxtaposed to the ground truth image. 

The quantitative analysis of the image quality 

improvements for different noise thresholds is 

depicted in Fig. 4.  

 
Fig. 3 Learning curves of loss during the 

training phase. 

 

 
Fig. 4 The improvement in image quality of the 

denoised, in terms of SSIM, versus the noisy 

image in different noise thresholds 

 



4.3 Image Quality Evaluation – Signal-to-Noise 

Ratio 

In conjunction with SSIM, PSNR was also 

calculated with the same methodology. The delta 

between the PSNR of the noisy scans and the 

denoised scans shows significant improvements of 

up to 22%. The mean PSNR improvements range 

from 17.5 to 18.2%, depending on the level of noise, 

as shown in Fig. 5. 

4.4 Radiomic Stability Evaluation 

An external validation approach was employed 

to quantify the impact of denoising on a texture 

level. The DL denoising model was tested on the 

unseen PI-CAI dataset to evaluate potential 

undesirable effects of the DL model, radiomic 

stability, and quantify the texture differences. In 

particular, no artifacts or other distortions were 

observed after denoising the T2w scans from the PI-

CAI dataset. Since synthetic noise was not 

introduced in the dataset, a SSIM-based metric that 

estimates the differences between denoised and the 

original examinations was calculated. A difference 

mean of 2±4% spanning from 0.4 to 35%. This is to 

be expected because in such a dataset that has been 

curated for image analysis challenges. In particular, 

only thirty examinations were found to be visibly 

noisy by the experienced radiophysicist, while the 

SSIM difference calculated by the denoiser was 

more than 10%. 

In Table I, the intraclass correlation coefficient 

(ICC) of various radiomic feature families is 

presented. The most heavily affected by the 

denoising is the 19.4% of first order (n=46) and the 

19.2% of GLCM (n=60) features. The majority of 

the radiomics are highly stable, while shape features 

are completely unaffected by DL denoising. 

Additional context of the impact of denoising on 

radiomics is provided by the boxplots of Fig.6. 

4.5 Assessing Denoising Qualitatively 

An experienced radiophysicist reviewed 

extensively the denoised T2w prostate slices from 

the internal (ProstateX) and external (PI-CAI) 

validation set. The bright regions of a T2w image 

were highly improved by the DL denoiser in terms 

of noisy pattern reduction and pixel intensity levels. 

In particular, it was observed that examinations with 

little textural enhancements depicted luminance and 

contrast levels similar to the original slice. This is 

crucial to clinicians and deep models for easier 

Table I Prostate gland radiomic feature stability, in terms 

of ICC, after applying the proposed DL denoising 
Feature Type ≥ 90 ≥ 75 ≥ 50 <50 

First order (n=234) 84 81 23 46 

GLCM (n=312) 128 81 59 60 

GLDM (n=182) 71 64 37 10 

GLRLM (n=208) 96 69 38 5 

GLSZM (n=208) 68 89 36 15 

Shape (n=14) 14 0 0 0 

 

 
Fig. 5 The improvement in image quality of the 

denoised, in terms of PSNR, versus the noisy 

image in different noise thresholds 

 
Fig. 6 Boxplots of concordance correlation 

coefficient (CCC) for the different families of 

radiomic features, calculated between the 

original and the preprocessed images 

 

 
Fig. 7 Comparison of the ground truth, 

synthetically noisy, and denoised slices.  

 



differentiation of various tissue types of a prostate 

T2w examination. The results of DL denoising from 

three patients are presented in Fig 7. 

5 Discussion 
Denoising is a necessary step in datasets with 

noisy imaging data for alleviating potential risks of 

model overfitting on noise or reduction in 

robustness and reproducibility of AI-based decision 

support tools. 

In our experiments, deep convolutional models 

with residual connections and no pooling layers 

produced denoising models that managed to reduce 

noise with no loss in texture complexity or image 

blurring, as shown in Fig. 7.  

A modified version of the DrCNN performed 

best in terms of PSNR and SSIM on the unseen 

testing set. Images with high-noise thresholds were 

more challenging to restore, as presented in Figs 4 

and 5. 

Overall, the findings suggest that denoised scans 

from a deep model have higher image quality than 

images processed by traditional image processing 

techniques. According to the experienced 

radiophysicist, DL denoising delivered, in many 

cases, substantial noise reduction with no visible 

blurring or loss of image quality. Additionally, the 

edges were preserved, and in many cases, enhanced, 

the original texture distribution was partially 

restored, and pixel intensities were closer to the 

values of the original scan. The qualitative analysis 

on the external validation set (PI-CAI) resulted in 

similar findings for thirty noisy images. 

Additionally, after denoising, the majority of 

radiomics feature types (67-100%, Table I) show 

relatively good stability (ICC ≥ 75) on the unseen 

external validation set. The boxplot in Fig. 6 shows 

that GLCM prostate imaging features were highly 

affected by DL denoising, although 67% of these 

features showed high stability. Shape features show 

resilience in denosing, which had no effect on them. 

A limiting factor of this study is the relatively 

small patient cohort that the deep model was built 

upon. The Fig. 3 shows that there might be some 

room for better convergence (minimum loss was 

0.43) with the additional T2w sequences in the 

training set. Moreover, the imaging data should be 

evaluated for high-quality and noise-free by a group 

of experts prior to model development, which 

requires a lot of resources, which is a major obstacle 

to further diversifying the dataset. 

Nevertheless, the qualitative analysis showed 

that noise reduction should be treated with caution 

and not applied agnostically when developing 

artificial intelligence or radiomic-based models 

since they seem to have a greater impact on feature 

stability and repeatability.  

In future iterations of the proposed deep denoiser 

a diverse set of data from multiple centers will be 

incorporated into the training and validation sets to 

enrich the data representation in the deep denoiser 

model.  

Furthermore, varying types of noise could be 

approximated and incorporated in the convergence 

phase of the analysis. Therefore, this advancement 

in prostate MRI denoising, as suggested by the 

experienced radiophysicist, might be employed in 

retrospective sets of data for enhancing older MR 

sequences by the proposed DL model. 

6 Conclusion 
The proposed deep learning denoiser is a robust 

and viable option for enhancing prostate T2w 

examinations without the drawbacks of traditional 

noise reduction solutions. Radiomics can be 

negatively affected when a DL denoising model is 

applied agnostically across noisy and curated 

datasets. 
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